您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 其它综合 > 初二数学教案(精选4篇)
初二数学教案(精选4篇)资料一般指可供参考作为根据的材料。当我们的学习任务遇到困难时,往往都需要参考资料。有了资料的协助我们的工作会变得更加顺利!所以,您有没有了解过资料的种类呢?为满足您的需求,网友特地编辑了“初二数学教案(精选4篇)”,请参考下载,或许对您有所帮助!初二数学教案【第一篇】教学目标1、知识与技能能确定多项式各项的公因式,会用提公因式法把多项式分解因式、2、过程与方法使学生经历探索多项式各项公因式的过程,依据数学化归思想方法进行因式分解、3、情感、态度与价值观培养学生分析、类比以及化归的思想,增进学生的合作交流意识,主动积极地积累确定公因式的初步经验,体会其应用价值、重、难点与关键1、重点:掌握用提公因式法把多项式分解因式、2、难点:正确地确定多项式的公因式、3、关键:提公因式法关键是如何找公因式、方法是:一看系数、二看字母、公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、教学方法采用“启发式”教学方法、教学过程一、回顾交流,导入新知【复习交流】下列从左到右的变形是否是因式分解,为什么?(1)2x2+4=2(x2+2);(2)2t2-3t+1=(2t3-3t2+t);(3)x2+4xy-y2=x(x+4y)-y2;(4)m(x+y)=mx+my;(5)x2-2xy+y2=(x-y)2、问题:1、多项式mn+mb中各项含有相同因式吗?2、多项式4x2-x和xy2-yz-y呢?请将上述多项式分别写成两个因式的乘积的形式,并说明理由、【教师归纳】我们把多项式中各项都有的公共的因式叫做这个多项式的公因式,如在mn+mb中的公因式是m,在4x2-x中的公因式是x,在xy2-yz-y中的公因式是y、概念:如果一个多项式的各项含有公因式,那么就可以把这个公因式提出来,从而将多项式化成两个因式乘积形式,这种分解因式的方法叫做提公因式法、二、小组合作,探究方法【教师提问】多项式4x2-8x6,16a3b2-4a3b2-8ab4各项的公因式是什么?【师生共识】提公因式的方法是先确定各项的公因式再将多项式除以这个公因式得到另一个因式,找公因式一看系数、二看字母,公因式的系数取各项系数的公约数;字母取各项相同的字母,并且各字母的指数取最低次幂、三、范例学习,应用所学【例1】把-4x2yz-12xy2z+4xyz分解因式、解:-4x2yz-12xy2z+4xyz=-(4x2yz+12xy2z-4xyz)=-4xyz(x+3y-1)【例2】分解因式,3a2(x-y)3-4b2(y-x)2【思路点拨】观察所给多项式可以找出公因式(y-x)2或(x-y)2,于是有两种变形,(x-y)3=-(y-x)3和(x-y)2=(y-x)2,从而得到下面两种分解方法、解法1:3a2(x-y)3-4b2(y-x)2=-3a2(y-x)3-4b2(y-x)2=-[(y-x)2?3a2(y-x)+4b2(y-x)2]=-(y-x)2[3a2(y-x)+4b2]=-(y-x)2(3a2y-3a2x+4b2)解法2:3a2(x-y)3-4b2(y-x)2=(x-y)2?3a2(x-y)-4b2(x-y)2=(x-y)2[3a2(x-y)-4b2]=(x-y)2(3a2x-3a2y-4b2)【例3】用简便的方法计算:0、84×12+12×0、6-0、44×12、【教师活动】引导学生观察并分析怎样计算更为简便、解:0、84×12+12×0、6-0、44×12=12×(0、84+0、6-0、44)=12×1=12、【教师活动】在学生完全例3之后,指出例3是因式分解在计算中的应用,提出比较例1,例2,例3的公因式有什么不同?四、随堂练习,巩固深化课本P167练习第1、2、3题、【探研时空】利用提公因式法计算:0、582×8、69+1、236×8、69+2、478×8、69+5、704×8、69五、课堂总结,发展潜能1、利用提公因式法因式分解,关键是找准公因式、在找公因式时应注意:(1)系数要找公约数;(2)字母要找各项都有的;(3)指数要找最低次幂、2、因式分解应注意分解彻底,也就是说,分解到不能再分解为止、六、布置作业,专题突破课本P170习题15、4第1、4(1)、6题、板书设计初二数学教案【第二篇】教学目标1.使学生正确理解不等式的解,不等式的解集,解不等式的概念,掌握在数轴上表示不等式的解的集合的方法;2.培养学生观察、分析、比较的能力,并初步掌握对比的思想方法;3.在本节课的教学过程中,渗透数形结合的思想,并使学生初步学会运用数形结合的观点去分析问题、解决问题.教学重点和难点重点:不等式的解集的概念及在数轴上表示不等式的解集的方法.难点:不等式的解集的概念.课堂教学过程设计一、从学生原有的认知结构提出问题1.什么叫不等式?什么叫方程?什么叫方程的解?(请学生举例说明)2.用不等式表示:(1)x的3倍大于1;(2)y与5的差大于零;(3)x与3的和小于6;(4)x的小于2.(3)当x取下列数值时,不等式x+3-4,,-,3,0,((2)、(3)两题用投影仪打在屏幕上)一、讲授新课1.引导学生运用对比的方法,得出不等式的解的概念2.不等式的解集及解不等式首先,向学生提出如下问题:不等式x+3(启发学生利用试验的方法,结合数轴直观研究.具体作法是,在数轴上将是x+3然后,启发学生,通过观察这些点在数轴上的分布情况,可看出寻求不等式x+3最后,请学生总结出不等式的解集及解不等式的概念.(若学生总结有困难,教师可作适当的启发、补充)一般地说,一个含有未知数的不等式的所有解,组成这个不等式的解的集合.简称为这个不等式的解集.不等式一般有无限多个解.求不等式的解集的过程,叫做解不等式.3.启发学生如何在数轴上表示不等式的解集我们知道解不等式不能只求个别解,而应求它的解集,一般而言,不等式的解集不是由一个数或几个数组成的,而是由无限多个数组成的,如x在数轴上表示3的点的左边部分,表示解集x由于x=3不是不等式x+3记号“≥”读作大于或等于,既不小于;记号“≤”读作小于或等于,即不大于.例如不等式x+5≥3的解集是x≥-2(想一想,为什么?并请一名学生回答)在数轴上表示如下图.即用数轴上表示-2的点和它的右边部分表示出来.由于解中包含x=-2,故其中表示-2的点用实心圆点表示.此处,教师应强调,这里特别要注意区别是用空心圆圈“。”还是用实心圆点“.”,是左边部分,还是右边部分.三、应用举例,变式练习例1在数轴上表示下列不等式的解集:(1)x≤-5;(2)x≥0;(3)x-1;(4)1≤X≤4;(5)-2解(1),(2),(3)略.(4)在数轴上表示1≤x≤4,如下图(5)在数轴上表示-2(此题在讲解时,教师要着重强调:注意所给题目中的解集是否包含分界点,是左边部分还是右边部分.本题应分别让6名学生板演,其余学生自行完成,教师巡视遇到问题,及时纠正)例2用不等式表示下列数量关系,再用数轴表示出来:(1)x小于-1;(2)x不小于-1;(3)a是正数;(4)b是非负数.解:(1)x小于-1表示为x(2)x不小于-1表示为x≥-1;(用数轴表示略)(3)a是正数表示为a0;(用数轴表示略)(4)b是非负数表示为b≥0.(用数轴表示略)(以上各小题分别请四名学生回答,教师板书,最后,请学生在笔记本上画数轴表示)例3用不等式的解集表示出下列各数轴所表示的数的范围.(投影,请学生口答,教师板演)解:(1)x(本题从另一例面来揭示不等式的解集与数轴上表示数的范围的一种对应关系,从而进一步加深学生对不等式解集的理解,以使学生进一步领会到数形结合的方法具有形象,直观,易于说明问题的优点)练习(1)用简明语言叙述下列不等式表示什么数:①x0;②x-1;④x≤-1.(2)在数轴上表示下列不等式的解集:①x3;②x≥-1;③x≤-;④0≤x(3)用观察法求不等式(4)观察不等式自然数解是什么?(表示选作题)四、师生共同小结针对本节课所学内容,请学生回答以下问题:1.如何区别不等式的解,不等式的解集及解不等式这几个概念?2.找出一元一次方程与不等式在“解”,“求解”等概念上的异同点.3.记号“≥”、“≤”各表示什么含义?4.在数轴上表示不等式解集时应注意什么?结合学生的回答,教师再强调指出,不等式的解、不等式的解集及解不等式这三者的定义是区别它们的标准;在数轴上表示不等式解集时,需特别注意解的范围的分界点,以便在数轴上正确使用空心圆圈“。”和实心圆点“·”.五、作业1.不等式x+3≤6的解集是什么?2.在数轴上表示下列不等式的解集:(1)x≤1;(2)x≤0;(3)-1(4)-3≤x≤2;(5)-23.求不等式x+2课堂教学设计说明由于本节课的知识点比较多,因此,在设计教学过程时,紧紧抓住不等式的解集这一重点知识.通过对方程的解的电义的回忆,对比学习不等式的解及解集.同时,为了进一步加深学生对不等式的解集的理解,教学中注意运用以下几种教学方法:(1)启发学生用试验的方法,结合数轴直观形象来研究不等式的解和解集;(2)比较方程与不等式的解的异同点;(3)通过例题与练习,加深理解.在数轴上表示数是数形结合的具体体现.而在数轴上表示不等式的解集则又进了一步.因此,在设计教学过程时,就充分考虑到应使学生通过本节课的学习,进一步领会数形结合的思想方法具有形象、直观、易于说明问题的优点,并初步学会用数形结合的观念去处理问题、解决问题.初二数学教案【第三篇】1本节的引入最好使用我们提供的多媒体课件,通过这个课件,使学生认识到这些四边形都是常见图形,研究它们具有实际应用意义,从而激发学生学习数学的兴趣。2本节的教学,要以三角形为基础,可以仿照三角形,通过类比的方法建立四边形的有关概念,如四边形的边、顶点、内角、外角、内角和、外角和、周长等都可同三角形类比,要结合三角形、四边形的图形,对比着指给学生看,让学生明确这些概念。3因为在三角形中没有对角线,所以四边形的对角线是一个新概念,它是解决四边形问题时常用的辅助线,通过它可以把四边形问题转化为三角形问题来解决。结合图形,让学生自己动手作四边形的一条对角线,并观察四边形的一条对角线把它分成几个三角形?两条对角线呢?使学生加深对对角线的作用的认识。4本节用到的数学思想方法是化归转化的思想和类比的思想,教师在讲解本节知识时要渗透这两种思想方法,并且在本节小结中对这两种数学思想方法进行总结,使学生明白碰到复杂的、未知的问题要转化为简单的、已知的问题。初二数学教案【第四篇】一、学习目标1.多项式除以单项式的运算法则及其应用。2.多项式除以单项式的运算算理。二、重点难点重点:多项式除以单项式的运算法则及其应用。难点:探索多项式与单项式相除的运算法则的过程。三、合作学习(一)回顾单项式除以单项式法则(二)学生动手,探究新课1.计算下列各式:1(am+bm)÷m;2(a2+ab)÷a;3(4x2y+2xy2)÷2xy。2.提问:①说说你是怎样计算的;②还有什么发现吗?四、精讲精练例:1(12a3—6a2+3a)÷3a;2(21x4y3—35x3y2+7x2y2)÷(—7x2y);3[(x+y)2—y(2x+y)—8x]÷2x;4(—6a3b3+8a2b4+10a2b3+2ab2)÷(—2ab2)。随堂练习:教科书练习。五、小结1、单项式的除法法则2、应用单项式除法法则应注意:A、系数先相除,把所得的结果作为商的系数,运算过程中注意单项式的系数饱含它前面的符号;B、把同底数幂相除,所得结果作为商的因式,由于目前只研究整除的情况,所以被除式中某一字母的指数不小于除式中同一字母的指数;C、被除式单独有的字母及其指数,作为商的一个因式,不要遗漏;D、要注意运算顺序,有乘方要先做乘方,有括号先算括号里的,同级运算从左到右的顺序进行;E、多项式除以单项式法则。
本文标题:初二数学教案(精选4篇)
链接地址:https://www.777doc.com/doc-12714408 .html