您好,欢迎访问三七文档
专题十五《概率与分布列》讲义15.1概率知识梳理.概率1.事件的相关概念2.频数、频率和概率(1)频数、频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数,称事件A出现的比例fn(A)=nAn为事件A出现的频率.(2)概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率.3.事件的关系与运算名称条件结论符号表示包含关系若A发生,则B一定发生事件B包含事件A(事件A包含于事件B)B⊇A(或A⊆B)相等关系若B⊇A且A⊇B事件A与事件B相等A=B并(和)事件A发生或B发生事件A与事件B的并事件(或和事件)A∪B(或A+B)交(积)事件A发生且B发生事件A与事件B的交事件(或积事件)A∩B(或AB)互斥事件A∩B为不可能事件事件A与事件B互斥A∩B=∅对立事件A∩B为不可能事件,A∪B为必然事件事件A与事件B互为对立事件A∩B=∅,P(A∪B)=14.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率为1.(3)不可能事件的概率为0.(4)概率的加法公式:如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率:若事件A与事件B互为对立事件,则A∪B为必然事件,P(A∪B)=1,P(A)=1-P(B).5.古典概型(1)特点:①有限性:在一次试验中所有可能出现的结果只有有限个,即只有有限个不同的基本事件.②等可能性:每个基本事件出现的可能性是均等的.(2)计算公式:P(A)=A包含的基本事件的个数基本事件的总数题型一.随机事件——互斥、对立事件1.袋中装有红球3个、白球2个、黑球1个,从中任取2个,则互斥而不对立的两个事件是()A.至少有一个白球;至少有一个红球B.至少有一个白球;红、黑球各一个C.恰有一个白球;一个白球一个黑球D.至少有一个白球;都是白球【解答】解:袋中装有红球3个、白球2个、黑球1个,从中任取2个,在A中,至少有一个白球和至少有一个红球两个事件能同时发生,不是互斥事件,故A不成立;在B中,至少有一个白球和红、黑球各一个两个事件不能同时发生但能同时不发生,是互斥而不对立的两个事件,故B成立;在C中,恰有一个白球和一个白球一个黑球两个事件能同时发生,不是互斥事件,故C不成立;在D中,至少有一个白球和都是白球两个事件能同时发生,不是互斥事件,故D不成立.故选:B.2.在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,那么概率是710的事件是()A.至多有一张移动卡B.恰有一张移动卡C.都不是移动卡D.至少有一张移动卡【解答】解:∵在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是310,∴概率是710的事件是“2张全是移动卡”的对立事件,∴概率是710的事件是“至多有一张移动卡”.故选:A.3.甲、乙两人下棋,两人下成和棋的概率是12,乙获胜的概率是13,则下列说法正确的是()A.乙不输的概率是23B.甲获胜的概率是13C.甲不输的概率是12D.乙输的概率是16【解答】解:甲乙两人下棋比赛,记“两人下成和棋”为事件A,“乙获胜”为事件B,则A,B互斥,则P(A)=12,P(B)=13,则乙不输即为事件A+B,由互斥事件的概率公式可得,P(A+B)=P(A)+P(B)=12+13=56,则甲胜的概率是1﹣P(A+B)=1−56=16,则甲不输即为甲获胜或和棋的概率为16+12=23,乙输的概率是就是甲获胜的概率16,故选:D.4.(2012·湖南)某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如表所示.一次购物量1至4件5至8件9至12件13至16件17件以上顾客数(人)x3025y10结算时间(分钟/人11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%.(Ⅰ)确定x,y的值,并估计顾客一次购物的结算时间的平均值;(Ⅱ)求一位顾客一次购物的结算时间不超过2分钟的概率.(将频率视为概率)【解答】解:(Ⅰ)由已知得25+y+10=55,x+30=45,所以x=15,y=20;顾客一次购物的结算时间的平均值为1×15+1.5×30+2×25+2.5×20+3×10100=1.9(分钟);(Ⅱ)记A:一位顾客一次购物的结算时间不超过2分钟;A1:该顾客一次购物的结算时间为1分钟;A2:该顾客一次购物的结算时间为1.5分钟;A3:该顾客一次购物的结算时间为2分钟;将频率视为概率可得P(A1)15100=0.15;P(A2)=30100=0.3;P(A3)=25100=0.25∴P(A)=P(A1)+P(A2)+P(A3)=0.15+0.3+0.25=0.7∴一位顾客一次购物的结算时间不超过2分钟的概率为0.7.5.(2017·全国3)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:最高气温[10,15)[15,20)[20,25)[25,30)[30,35)[35,40)天数216362574以最高气温位于各区间的频率代替最高气温位于该区间的概率.(1)求六月份这种酸奶一天的需求量X(单位:瓶)的分布列;(2)设六月份一天销售这种酸奶的利润为Y(单位:元),当六月份这种酸奶一天的进货量n(单位:瓶)为多少时,Y的数学期望达到最大值?【解答】解:(1)由题意知X的可能取值为200,300,500,P(X=200)=2+1690=0.2,P(X=300)=3690=0.4,P(X=500)=25+7+490=0.4,∴X的分布列为:X200300500P0.20.40.4(2)由题意知这种酸奶一天的需求量至多为500瓶,至少为200瓶,∴只需考虑200≤n≤500,当300≤n≤500时,若最高气温不低于25,则Y=6n﹣4n=2n;若最高气温位于区间[20,25),则Y=6×300+2(n﹣300)﹣4n=1200﹣2n;若最高气温低于20,则Y=6×200+2(n﹣200)﹣4n=800﹣2n,∴EY=2n×0.4+(1200﹣2n)×0.4+(800﹣2n)×0.2=640﹣0.4n,当200≤n≤300时,若最高气温不低于20,则Y=6n﹣4n=2n,若最高气温低于20,则Y=6×200+2(n﹣200)﹣4n=800﹣2n,∴EY=2n×(0.4+0.4)+(800﹣2n)×0.2=160+1.2n.∴n=300时,Y的数学期望达到最大值,最大值为520元.题型二.古典概型1.(2019·全国2)生物实验室有5只兔子,其中只有3只测量过某项指标.若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为()A.23B.35C.25D.15【解答】解:法一:由题意,可知:根据组合的概念,可知:从这5只兔子中随机取出3只的所有情况数为𝐶53,恰有2只测量过该指标的所有情况数为𝐶32𝐶21.∴p=𝐶32𝐶21𝐶53=35.法二:设其中做过测试的3只兔子为a,b,c,剩余的2只为A,B,则从这5只中任取3只的所有取法有{a,b,c},{a,b,A},{a,b,B},{a,c,A},{a,c,B},{a,A,B},{b,c,A},{b,c,B},{b,A,B},{c,A,B}10种,其中恰好有两只做过测试的取法有{a,b,A},{a,b,B},{a,c,A},{a,c,B},{b,c,A},{b,c,B}6种,故恰有两只做过测试的概率为610=35.故选:B.2.某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()A.110B.310C.710D.910【解答】解:男生30人,女生20人,按分层抽样方法从班级中选出5人负责校园开放日的接待工作,则男生为5×3030+20=3人,女生为2人,从这5人中随机选取2人,共有C52=10种,其中全时女生的有1种,故至少有1名男生的概率是1−110=910,故选:D.3.口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取出1个球,则两次取出的球颜色不同的概率是()A.29B.13C.23D.89【解答】解:∵口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回的连续抽取2次,每次从中任意地取出1个球,∴基本事件总数n=𝐶31𝐶31=9,能两次取出的球颜色不同包含的基本事件个数m=𝐶31𝐶21=6,∴能两次取出的球颜色不同的概率p=𝑚𝑛=69=23.故选:C.4.在五个数1,2,3,4,5中,若随机取出三个数字,则剩下两个数字都是奇数的概率()A.310B.320C.15D.14【解答】解:在五个数1,2,3,4,5中,随机取出三个数字,基本事件总数n=𝐶53=10,剩下两个数字都是奇数包含的基本事件个数m=𝐶32=3.则剩下两个数字都是奇数的概率p=𝑚𝑛=310.故选:A.5.(2019·全国1)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“”和阴爻“”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是()A.516B.1132C.2132D.1116【解答】解:在所有重卦中随机取一重卦,基本事件总数n=26=64,该重卦恰有3个阳爻包含的基本个数m=𝐶63=20,则该重卦恰有3个阳爻的概率p=𝑚𝑛=2064=516.故选:A.6.树立和践行“绿水青山就是金山银山,坚持人与自然和谐共生”的理念越来越深入人心,已形成了全民自觉参与,造福百姓的良性循环.据此,某网站退出了关于生态文明建设进展情况的调查,调查数据表明,环境治理和保护问题仍是百姓最为关心的热点,参与调查者中关注此问题的约占80%.现从参与关注生态文明建设的人群中随机选出200人,并将这200人按年龄分组:第1组[15,25),第2组[25,35),第3组[35,45),第4组[45,55),第5组[55,65),得到的频率分布直方图如图所示.(1)求出a的值;(2)求这200人年龄的样本平均数(同一组数据用该区间的中点值作代表)和中位数(精确到小数点后一位);(3)现在要从年龄较小的第1,2组中用分层抽样的方法抽取5人,再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.【解答】解:(1)由频率分布直方图得:10×(0.010+0.015+a+0.030+0.010)=1,解得a=0.035.(2)平均数为20×0.1+30×0.15+40×0.35+50×0.3+60×0.1=41.5岁.设中位数为x,则10×0.010+10×0.015+(x﹣35)×0.035=0.5,∴x≈42.1岁.(3)第1,2组的人数分别为20人,30人,从第1,2组中用分层抽样的方法抽取5人,则第1,2组抽取的人数分别为2人,3人,分别记为a1,a2,b1,b2,b3.设从5人中随机抽取3人,为:(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3),(a2,b2,b3),(b1,b2,b3)共10个基本事件,其中第2组恰好抽到2人包含:(a1,b1,b2),(a1,b1,b3),(a1,b2,b3),(a2,b1,b2),(a2,b1,b3)
本文标题:【新高考复习】专题15概率与分布列 15.1概率 题型归纳讲义-2022届高三数学一轮复习(解析版)
链接地址:https://www.777doc.com/doc-12780540 .html