您好,欢迎访问三七文档
专题十六《统计与统计案例》讲义16.2统计案例题型一.一元线性回归模型1.某车间为了规划生产进度提高生产效率,记录了不同时段生产零件个数x(百个)与相应加工总时长y(小时)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为𝑦^=0.7x+0.05,则下列结论错误的是()x2345y1.52m3.5A.加工总时长与生产零件数呈正相关B.该回归直线一定过点(3.5,2.5)C.零件个数每增加1百个,相应加工总时长约增加0.7小时D.m的值是2.852.为了研究某班学生的脚长x(单位:厘米)和身高y(单位:厘米)的关系,从该班随机抽取10名学生,根据测量数据的散点图可以看出y与x之间有线性相关关系,设其回归直线方程为𝑦̂=𝑏̂𝑥+𝑎̂.已知∑10𝑖=1𝑥𝑖=225,∑10𝑖=1𝑦𝑖=1600,𝑏̂=4.该班某学生的脚长为23,据此估计其身高为()A.160B.162C.166D.1703.(2020•新课标Ⅰ)某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:℃)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据(xi,yi)(i=1,2,…,20)得到下面的散点图:由此散点图,在10℃至40℃之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是()A.y=a+bxB.y=a+bx2C.y=a+bexD.y=a+blnx4.(2018•新课标Ⅱ)如图是某地区2000年至2016年环境基础设施投资额y(单位:亿元)的折线图.为了预测该地区2018年的环境基础设施投资额,建立了y与时间变量t的两个线性回归模型.根据2000年至2016年的数据(时间变量t的值依次为1,2,…,17)建立模型①:𝑦̂=−30.4+13.5t;根据2010年至2016年的数据(时间变量t的值依次为1,2,…,7)建立模型②:𝑦̂=99+17.5t.(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;(2)你认为用哪个模型得到的预测值更可靠?并说明理由.5.(2016•新课标Ⅲ)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1﹣7分别对应年份2008﹣2014.(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以证明;(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.附注:参考数据:∑7𝑖=1yi=9.32,∑7𝑖=1tiyi=40.17,√∑7𝑖=1(𝑦𝑖−𝑦)2=0.55,√7≈2.646.参考公式:相关系数r=∑𝑛𝑖=1(𝑡𝑖−𝑡)(𝑦𝑖−𝑦)√∑𝑛𝑖=1(𝑡𝑖−𝑡)2∑𝑛𝑖=1(𝑦𝑖−𝑦)2,回归方程𝑦̂=𝑎̂+𝑏̂t中斜率和截距的最小二乘估计公式分别为:𝑏̂=∑𝑛𝑖=1(𝑡𝑖−𝑡)(𝑦𝑖−𝑦)∑𝑛𝑖=1(𝑡𝑖−𝑡)2,𝑎̂=𝑦−𝑏̂𝑡.6.(2018秋•岳麓区校级月考)越接近高考学生焦虑程度越强,四个高三学生中大约有一个有焦虑症,经有关机构调查,得出距离高考周数与焦虑程度对应的正常值变化情况如下表:周数x654321正常值y556372809099(1)作出散点图:(2)根据上表数据用最小二乘法求出y关于x的线性回归方程𝑦̂=𝑏̂x+𝑎̂(精确到0.01);(3)根据经验,观测值为正常值的0.85~1.06为正常,若1.06~1.12为轻度焦虑,1.12~1.20为中度焦虑,1.20及其以上为重度焦虑,若为中度焦虑及其以上,则要进行心理疏导,若一个学生在距高考第二周时观测值为100,则该学生是否需要进行心理疏导?其中𝑏̂=∑𝑛𝑖=1𝑥𝑖𝑦𝑖−𝑛𝑥𝑦∑𝑛𝑖=1𝑥𝑖2−𝑛𝑥2,∑6𝑖=1xiyi=1.452,∑6𝑖=1x𝑖2=91,𝑎̂=𝑦−𝑏̂𝑥.7.(2020秋•昌江区校级期中)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单位:t)和年利润z(单位:千元)的影响,对近8年的年宣传费xi和年销售量yi(i=1,2,…,8)数据作了初步处理,得到如图的散点图及一些统计量的值.𝑥𝑦𝑤∑8𝑖=1(xi−𝑥)2∑8𝑖=1(wi−𝑤)2∑8𝑖=1(xi−𝑥)(yi−𝑦)∑8𝑖=1(wi−𝑤)(yi−𝑦)46.65636.8289.81.61469108.8表中𝑤𝑖=√𝑥𝑖,𝑤=18∑8𝑖=1𝑤𝑖.附:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线v=α+βμ的斜率和截距的最小二乘估计分别为𝛽̂=∑𝑛𝑖=1(𝑢𝑖−𝑢)(𝑣𝑖−𝑣)∑𝑛𝑖=1(𝑢𝑖−𝑢)2,𝛼̂=𝑣−𝛽̂𝑢.(1)根据散点图判断y=a+bx和y=c+d√𝑥哪一个适宜作为销售量y关于年宣传费x的回归方程类型?(给出判断即可,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y关于x的回归方程;(3)已知这种产品的年利润z与x、y的关系为z=0.2y﹣x,根据(2)的结果回答下列问题:①年宣传费x=49时,年销售量及年利润的预报值是多少?②年宣传费x为何值时,年利润的预报值最大?题型二.独立性检验1.某医疗研究所为了检验新开发的流感疫苗对甲型Hln1流感的预防作用,把1000名注射了疫苗的人与另外1000名未注射疫苗的人的半年的感冒记录作比较,提出假设H0:“这种疫苗不能起到预防甲型Hln1流感的作用”,并计算出P(Χ2≥6.635)≈0.01,则下列说法正确的是()A.这种疫苗能起到预防甲型Hln1流感的有效率为1%B.若某人未使用该疫苗,则他在半年中有99%的可能性得甲型Hln1C.有1%的把握认为“这种疫苗能起到预防甲型Hln1流感的作用”D.有99%的把握认为“这种疫苗能起到预防甲型Hln1流感的作用”2.通过随机询问200名性别不同的大学生是否爱好踢毽子运动,计算得到统计量K2的观测值k≈4.892,参照附表,得到的正确结论是()P(K2≥k)0.100.050.025k2.7063.8415.024A.有97.5%以上的把握认为“爱好该项运动与性别有关”B.有97.5%以上的把握认为“爱好该项运动与性别无关”C.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别有关”D.在犯错误的概率不超过5%的前提下,认为“爱好该项运动与性别无关”3.某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如下所示的列联表.经计算K2的观测值k≈4.762,则可以推断出()满意不满意男3020女4010P(k2≥k)0.1000.0500.010k2.7063.8416.635A.该学校男生对食堂服务满意的概率的估计值为35B.调研结果显示,该学校男生比女生对食堂服务更满意C.有95%的把握认为男、女生对该食堂服务的评价有差异D.有99%的把握认为男、女生对该食堂服务的评价有差异4.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量<50kg箱产量≥50kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).附:P(K2≥k)0.0500.0100.001k3.8416.63510.828K2=𝑛(𝑎𝑑−𝑏𝑐)2(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑).5.某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人.第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数m,并将完成生产任务所需时间超过m和不超过m的工人数填入下面的列联表:超过m不超过m第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:K2=𝑛(𝑎𝑑−𝑏𝑐)2(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑),P(K2≥k)0.0500.0100.001k3.8416.63510.8286.韩国民意调查机构“盖洛普韩国”2016年11月公布的民调结果显示,受“闺蜜门”时间影响,韩国总统朴槿惠的民意支持率持续下跌,在所调查的1000个对象中,年龄在[20,30)的群体有200人,支持率为0%,年龄在[30,40)和[40,50)的群体中,支持率均为3%;年龄在[50,60)和[60,70)的群体中,支持率分别为6%和13%,若在调查的对象中,除[20,30)的群体外,其余各年龄层的人数分布情况如频率分布直方图所示,其中最后三组的频数构成公差为100的等差数列.(1)依频率分布直方图求出图中各年龄层的人数(2)请依上述支持率完成下表:年龄分布是否支持[30,40)和[40,50)[50,60)和[60,70)合计支持不支持合计根据表中的数据,能否在犯错误的概率不超过0.001的前提下认为年龄与支持率有关?附表:P(K2≥k)0.150.100.050.0250.0100.0050.001k2.0722.7063.8415.0246.6357.87910.828(参考公式:K2=𝑛(𝑎𝑑−𝑏𝑐)2(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑),其中n=a+b+c+d参考数据:125×33=15×275,125×97=25×485)题型三.统计案例综合1.“绿水青山就是金山银山”,“建设美丽中国”已成为新时代中国特色社会主义生态文明建设的重要内容,某班在一次研学旅行活动中,为了解某苗圃基地的柏树幼苗生长情况,在这些树苗中随机抽取了120株测量高度(单位:cm),经统计,树苗的高度均在区间[19,31]内,将其按[19,21),[21,23),[23,25),[25,27),[27,29),[29,31]分成6组,制成如图所示的频率分布直方图.据当地柏树苗生长规律,高度不低于27cm的为优质树苗.(1)求图中a的值;(2)已知所抽取的这120株树苗来自于A,B两个试验区,部分数据如下列联表:试验区试验区合计优质树苗20非优质树苗60合计将列联表补充完整,并判断是否有99.9%的把握认为优质树苗与A,B两个试验区有关系,并说明理由;(3)用样本估计总体,若从这批树苗中随机抽取4株,其中优质树苗的株数为X,求X的分布列和数学期望EX.附:参考公式与参考数据:K2=𝑛(𝑎𝑑−𝑏𝑐)2(𝑎+𝑏)(𝑐+𝑑)(𝑎+𝑐)(𝑏+𝑑),其中n=a+b+c+d.P(K2≥k0)0.0100.0050.001k06.6357.87910.8282.2021年6月17日9时22分,我国酒泉卫星发射中心用长征2F遥十二运载火箭,成功将神舟十二号载人飞船送入预定轨道,顺利将聂海胜、刘伯明、汤洪波3名航天员送入太空,发射取得圆满成功,这标志着中国人首次进入自己的空间站.某公司负责生产的A型材料是神舟十二号的重要零件,该材料应用前景十分广泛.该公司为了将A型材料更好地投入商用,拟对A型材料进行应用改造、根据市场调研与模拟,得到应用改造投入x(亿元)与产品的直接收益y(亿元)的数据统计如表:序号123456789101112x2346810
本文标题:【新高考复习】专题16统计与统计案例 16.2统计案例 题型归纳讲义-2022届高三数学一轮复习(原
链接地址:https://www.777doc.com/doc-12780741 .html