您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 【新高考复习】专题13 数列的性质必刷小题100题(解析版)
专题13数列的性质必刷小题100题任务一:善良模式(基础)1-30题一、单选题1.已知nS为等差数列na的前n项和,且满足24422aS,,则8S()A.70B.82C.92D.105【答案】C【分析】由等差数列的基本量法求出首项1a和公差d,然后再求得8S【详解】设公差为d,则1144622adad,解得113ad,,故8182892Sad.故选:C.2.已知na为等比数列,nS是它的前n项和.若2312aaa,且4a与72a的等差中项为54,则5S()A.29B.31C.33D.35【答案】B【分析】设等比数列na的公比为q,由已知可得q和1a,代入等比数列的求和公式即可【详解】因为2312aaa23114aqaa,42a,3474452224aaaaq,所以11,162qa,551161231112S,故选:B.3.已知数列na的通项公式是132nnan,则122019aaa()A.3028B.3027C.3027D.3028【答案】A【分析】根据数列na的通项公式,1220191234201720182019aaaaaaaaaa,利用并项求和法即可得出答案.【详解】解:由132nnan,得122019147106055aaa1471060553100960553028.故选:A.4.在等比数列na中,已知1234566332aaaaaa,34132aa,则123456111111aaaaaa()A.63B.3116C.2D.631024【答案】A【分析】由于162534123456162534111111aaaaaaaaaaaaaaaaaa,然后利用等比数列的性质结合已知条件可得结果【详解】解:由等比数列性质162534132aaaaaa及1234566332aaaaaa得1625341234561234561625343411111163326332aaaaaaaaaaaaaaaaaaaaaaaaaa故选:A5.记nS为正项等比数列na的前n项和,若314S,12a,则2514aaaa的值为()A.2B.12C.3D.13【答案】A【分析】由已知求na的公比q,再由2514aaqaa即可得结果.【详解】设公比为0qq,则231114Saqq,得260qq,解得2q=(3q舍去),∴142514142qaaaaqaaaa.故选:A.6.等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和为()A.-24B.-3C.3D.8【答案】A【分析】由等差数列的通项公式与求和公式求解即可【详解】根据题意得2326aaa,即(a1+2d)2=(a1+d)(a1+5d),解得d=0(舍去),d=-2,所以数列{an}的前6项和为61656566122422Sad.故选:A7.已知数列na的前n项和为nS,且na满足122nnnaaa,532aa,若22S,则9a()A.9B.172C.10D.192【答案】B【分析】确定数列为等差数列,然后由基本量法求得公差和首项的可得结论.【详解】因为122nnnaaa,所以数列{}na是等差数列,则5322aad,1d,211(1)2Saa,112a,所以9117822a.故选:B.8.若nS为数列na的前n项和,且22nnSa,则na等于()A.2nB.2nC.12nD.12n【答案】B【分析】利用11,1,2nnnSnaSSn求得na.【详解】1n时,11122,2aaa.2n时,1122nnSa,11122,2nnnnnnnaSSaaaa,所以数列na是首项为2,公比为2的等比数列,所以2nna.故选:B9.在公差大于0的等差数列na中,71321aa,且1a,31a,65a成等比数列,则数列11nna的前21项和为()A.12B.21C.11D.31【答案】B【分析】根据等差数列的通项公式,由71321aa,求得11a,再由1a,31a,65a成等比数列,求得2d,得到21nan,结合并项求和,即可求解.【详解】由题意,公差d大于0的等差数列na中,71321aa,可得11212121adad,即11a,由1a,31a,65a成等比数列,可得231615aaa,即为2121155dd,解得2d或34d(舍去),所以数列na的通项公式12121,nannnN,所以数列11nna的前21项和为:2112341920211357373941Saaaaaaa2104121.故选:B.10.在等差数列{}na中,5321aa,8262aa,则1210aaa()A.165B.160C.155D.145【答案】D【分析】利用等差数列通项公式列出方程,求出11a,3d,再由等差数列前n项和公式能求出结果.【详解】解:在等差数列{}na中,5321aa,8262aa,111142(2)176()2adadadad,解得11a,3d,12101010910131452aaaS.故选:D.11.记等比数列na的前n项和为nS,若482,8,SS则12S()A.14B.18C.26D.32【答案】C【分析】根据等比数列的性质即可求解.【详解】由等比数列的性质可得2844128SSSSS,即2128228S,解得1226S.故选:C12.已知nS为等比数列na的前n项和,410S,1270S,则8S().A.30B.20C.30D.30或20【答案】A【分析】利用等比数列基本量代换代入,列方程组,即可求解.【详解】由12470,10SS得1243SS,则等比数列na的公比1q,则121124141S7011S101aqqaqq得124171qq,令40qt,则3171tt即217tt,解得2t或3(舍去),42q,则484430SSqS.故选:A.13.已知数列na为等差数列,其前n项和为nS,3965aaa,则11S()A.110B.55C.50D.45【答案】B【分析】根据给定条件结合等差数列的性质计算出6a,再利用前n项和公式结合等差数列的性质计算即得.【详解】在等差数列na中,3962aaa,于是得63965aaaa,所以1111161111552aaSa.故选:B.14.数列na中的前n项和22nnS,数列2logna的前n项和为nT,则20T().A.190B.192C.180D.182【答案】B【分析】根据公式1nnnaSS计算通项公式得到14,12,2nnnan,故2,11,2nnbnn,求和得到答案.【详解】当1n时,111224aS;当2n时,11112222222nnnnnnnnaSS,经检验14a不满足上式,所以14,12,2nnnan,2lognnba,则2,11,2nnbnn,201911921922T.故选:B.15.已知数列na的前n项积为nT,且满足111nnnaanaN,若114a,则18T为().A.4B.35-C.53D.512【答案】D【分析】由数列na是周期为4的数列,根据周期性即可求解.【详解】解:因为111nnnaaa,114a,所以253a,34a,435a,514a,…,所以数列na是周期为4的数列,因为12341aaaa,所以218123412512Taaaaaa,故选:D.16.在等比数列na中,公比为12,前6项的和为1894,则6a()A.738B.34C.38D.24【答案】B【分析】利用等比数列和公式计算124a,再计算561aaq得到答案.【详解】661111632132121894Saa,故124a,故55611243242324aaq.故选:B.二、多选题17.已知数列na的前n项和为nS,下列说法正确的是()A.若点,nna在函数(,ykxbkb为常数)的图象上,则na为等差数列B.若na为等差数列,则3na为等比数列C.若na为等差数列,10a,110S,则当10n时,nS最大D.若23nnS,则na为等比数列【答案】AB【分析】结合等差数列、等比数列的知识对选项进行分析,由此确定正确选项.【详解】A,依题意naknb,所以na为等差数列,A正确.B,依题意111naanddnad,113333nnadnadadd,所以3na为等比数列,B正确.C,1111111166110,0,20,02aaSaaaa,所以5n或6n,nS最大,C错误.D,11235,752,1174aSaa,所以na不是等比数列.故选:AB18.已知等差数列na的前n项和为nS,若10a且20210S,则下列说法正确的有()A.10100aB.10110.aC.120200aaD.220210.aa【答案】BC【分析】根据题意和等差数列前n项和公式可得10110a,结合10a和等差数列的性质依次判断选项即可.【详解】1202120211011101120212021002aaSaa,na公差0d,A错,B正确.对于C,12020120210aaaa,C正确.对于D,2202112022120210aaaaaa,D错误,故选:BC.19.数列{an}的前n项和为Sn,*111,2NnnaaSn,则有()A.Sn=3n-1B.{Sn}为等比数列C.an=2·3n-1D.21,123,2nnnan【答案】ABD【分析】根据11,1,2nnnSnaSSn求得na,进而求得nS以及判断出nS是等比数列.【详解】依题意*111,2NnnaaSn,当1n时,2122aa,当2n时,12nnaS,11222nnnnnaaSSa,所以13nnaa,所以2223232nnnaan,所以21,123,2nnnan.当2n时,1132nnnaS;当1n时,111Sa符合上式,所以13nnS.13nnSS,所以数列nS是首项为1,公比为3的等比数列.所以ABD选项正确,C选项错误.故选:ABD20.记等差数列na的前n项和为nS,已知53a,39S,则有()A.15aB.40aC.60SD.34SS【答案】ACD【分析】先由39S,以及等差数列的性质可得23a,5223aad
本文标题:【新高考复习】专题13 数列的性质必刷小题100题(解析版)
链接地址:https://www.777doc.com/doc-12788122 .html