您好,欢迎访问三七文档
专题四《函数》讲义5.9函数的零点知识梳理.函数的零点1.函数的零点(1)函数零点的定义:对于函数y=f(x),把使f(x)=0的实数x叫做函数y=f(x)的零点.(2)三个等价关系:方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.2.函数零点的判定如果函数y=f(x)在区间[a,b]上的图象是连续不断的一条曲线,并且有f(a)·f(b)<0,那么函数y=f(x)在区间(a,b)内有零点,即存在c∈(a,b),使得f(c)=0,这个c也就是f(x)=0的根.我们把这一结论称为函数零点存在性定理.题型一.零点所在的区间1.函数f(x)=3x−3𝑥−2的零点所在区间是()A.(﹣1,0)B.(0,1)C.(1,2)D.(2,3)【解答】解:由于函数f(x)=3x−3𝑥−2,∴f(1)=3﹣3﹣2=﹣2<0,f(2)=9−32−2>0,∵f(1)•f(2)<0,函数是连续增函数,∴函数f(x)=3x−3𝑥−2的零点所在的区间是(1,2),故选:C.2.函数f(x)=log2x+x+2的零点所在的一个区间是()A.(0,18)B.(18,14)C.(14,13)D.(13,12)【解答】解:函数f(x)在(0,+∞)单调递增,且其图象在定义域上是一条不间断的曲线,又𝑓(18)=−3+18+2=−78<0,𝑓(14)=−2+14+2=14>0,由函数零点存在性定理可知,函数f(x)在(18,14)上有零点.故选:B.3.设函数y=x3与y=(12)x﹣2的图象交点为(x0,y0),则x0所在的区间是()A.(0,1)B.(3,4)C.(1,2)D.(2,3)【解答】解:函数y=x3在R上单调递增,y=(12)𝑥−2在R上是减函数.∵x≤1时,函数y=x3的图象在y=(12)𝑥−2的下面;x≥2时,函数y=x3在y=(12)𝑥−2的上面.∴x0所在的区间是(1,2).故选:C.题型二.零点的个数1.函数f(x)=4x|log0.5x|﹣1的零点个数为2.【解答】解:函数的零点满足|𝑙𝑜𝑔0.5𝑥|=(14)𝑥,则零点的个数即函数y=|log0.5x|与𝑦=(14)𝑥交点的个数,绘制函数图象如图所示,观察可得,交点个数为2,故函数零点的个数为2.故答案为:2.2.函数f(x)={2𝑥−2,𝑥≤1𝑥2−3𝑥+2,𝑥>1的图象与函数g(x)=ln(x+1)的图象的交点的个数是2.【解答】解:作出函数f(x)和g(x)的图象如图:由两个函数的图象可知两个函数有2个交点,故答案为:2.3.若偶函数f(x)满足f(x﹣1)=f(x+1),在x∈[0,1]时,f(x)=x2,则关于x的方程f(x)=(110)x在[0,4]上根的个数是4.【解答】解:因为偶函数f(x)满足f(x﹣1)=f(x+1),所以函数f(x)的图象关于y轴对称,同时以2为周期.根据x∈[0,1]时,f(x)=x2得该函数在[0,4]上的图象为:再在同一坐标系中做出函数𝑦=(110)𝑥的图象,如图,当x∈[0,4]时,两函数图象有四个交点.所以方程f(x)=(110)x在[0,4]上有4个根.故答案为4.4.已知定义在R上的函数f(x)满足f(x+1)=﹣f(x),当x∈[﹣1,1]时,f(x)=x2,函数g(x)={𝑙𝑜𝑔𝑎(𝑥−1)𝑥>12𝑥𝑥≤1,若函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上恰有8个零点,则a的取值范围为()A.(2,4)B.(2,5)C.(1,5)D.(1,4)【解答】解:函数h(x)=f(x)﹣g(x)在区间[﹣5,5]上恰有8个零点即函数f(x)与函数g(x)在区间[﹣5,5]上有8个交点,由f(x+1)=﹣f(x)=f(x﹣1)知,f(x)是R上周期为2的函数,作函数f(x)与函数g(x)在区间[﹣5,5]上的图象如下,由图象知,当x∈[﹣5,1]时,图象有5个交点,故在[1,5]上有3个交点即可;故{𝑙𝑜𝑔𝑎(3−1)<1𝑙𝑜𝑔𝑎(5−1)>1;解得,2<a<4;故选:A.题型三.已知零点个数求参1.若函数f(x)=ex﹣x2+ax﹣1在区间[1,2]内有且仅有一个零点,则实数a的取值范围为()A.[5−𝑒22,+∞)B.(﹣∞,2﹣e]C.(5−𝑒22,2−𝑒)D.[5−𝑒22,2−𝑒]【解答】解:依题意,−𝑎=𝑒𝑥𝑥−𝑥−1𝑥在x∈[1,2]上有且仅有一个解,设𝑔(𝑥)=𝑒𝑥𝑥−𝑥−1𝑥,则𝑔′(𝑥)=𝑒𝑥⋅𝑥−𝑒𝑥𝑥2−1+1𝑥2=(𝑥−1)(𝑒𝑥−𝑥−1)𝑥2,由ex≥x+1(当且仅当x=0时取等号)可知,当x∈[1,2]时,函数g(x)单调递增,∴当x∈[1,2]时,𝑔(𝑥)𝑚𝑖𝑛=𝑔(1)=𝑒−2,𝑔(𝑥)𝑚𝑎𝑥=𝑔(2)=𝑒22−2−12=𝑒2−52,∴−𝑎∈[𝑒−2,𝑒2−52],∴𝑎∈[5−𝑒22,2−𝑒].故选:D.2.若函数f(x)=logax﹣x+a(a>0且a≠1)有两个零点,则实数a的取值范围是()A.(0,1)B.(1,+∞)C.(1,e)D.(e,+∞)【解答】解:令f(x)=0,有logax=x﹣a,①当a>1时,函数y=logax单增,函数y=x﹣a相当于函数y=x向下至少移动了1个单位,故函数y=logax与y=x﹣a的图象有两个交点;②当0<a<1时,函数y=logax与y=x﹣a的图象显然仅有一个交点,综上,a>1.故选:B.3.已知函数f(x)={1𝑥+1−3,𝑥∈(−1,0]3𝑥,𝑥∈(0,1],且函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围是(−94,﹣2]∪(0,32].【解答】解:由g(x)=f(x)﹣mx﹣m=0,即f(x)=m(x+1),分别作出函数f(x)(图中红色曲线),和y=h(x)=m(x+1)的图象(图中绿色曲线),为一条过点(﹣1,0)的直线,如图:由图象可知f(1)=3,h(x)表示过定点A(﹣1,0)的直线,当h(x)过(1,3)时,m=32,此时两个函数有两个交点,此时满足条件的m的取值范围是0<m≤32①.当h(x)过(0,﹣2)时,h(0)=﹣2,解得m=﹣2,此时两个函数有两个交点.当h(x)与f(x)相切时,两个函数只有一个交点,此时1𝑥+3x+3=m(x+1),即m(x+1)2+3(x+1)﹣1=0,当m=0时,只有1解;当m≠0,由△=9+4m=0得m=−94,此时直线和f(x)相切.∴要使函数有两个零点,则−94<m≤﹣2②.综上可得,函数g(x)=f(x)﹣mx﹣m在(﹣1,1]内有且仅有两个不同的零点,则实数m的取值范围为(−94,﹣2]∪(0,32],故答案为:(−94,﹣2]∪(0,32].4.已知函数f(x)=e2x﹣a(x+2).当a=2时,f(x)的增区间为(0,+∞);若f(x)有两个零点,则实数a的取值范围为(2e﹣3,+∞).【解答】解:当a=2时,f(x)=e2x﹣2(x+2),f′(x)=2e2x﹣2,令f′(x)>0,解得x>0,则f(x)的增区间为(0,+∞).f′(x)=2e2x﹣a,x∈R.①当a≤0时,f′(x)>0,f(x)单调递增,至多有一个零点,不合题意;②当a>0时,令f′(x)=0⇒x=12ln𝑎2,可得f(x)在(﹣∞,12ln𝑎2)单调递减,在(12ln𝑎2,+∞)单调递增,故f(x)的最小值为f(12ln𝑎2)=𝑎2−a(12ln𝑎2+2)=−𝑎2ln𝑎2−32𝑎.∵f(x)有两个零点,当x→±∞时,f(x)→+∞,∴f(𝑎2ln𝑎2)<0⇒𝑎2ln𝑎2+32𝑎>0,解得a>2e﹣3,所以实数a的取值范围为(2e﹣3,+∞)故答案为:(0,+∞);(2e﹣3,+∞).5.已知f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+12|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),则实数a的取值范围是(0,12).【解答】解:f(x)是定义在R上且周期为3的函数,当x∈[0,3)时,f(x)=|x2﹣2x+12|,若函数y=f(x)﹣a在区间[﹣3,4]上有10个零点(互不相同),在同一坐标系中画出函数f(x)与y=a的图象如图:由图象可知𝑎∈(0,12).故答案为:(0,12).6.已知函数f(x)是定义域为R的偶函数,且满足f(2﹣x)=f(x),当0≤x≤1时,f(x)=2x2,g(x)=loga|x﹣1|(√2<a<2),则函数h(x)=f(x)﹣g(x)所有零点的和为()A.3B.4C.5D.6【解答】解:函数f(x)是定义域为R的偶函数,且满足f(2﹣x)=f(x),可得对称轴x=1,所以可得周期T=2,又g(x)=loga|x﹣1|(√2<a<2),可得g(x)也是关于x=1对称,令h(x)=f(x)﹣g(x)=0,可得g(x)=f(x),在同一坐标系中在作y=f(x)与y=g(x)的图象如图所示:因为√2<a<2,g(x)=loga|x﹣1|,所以g(2)=0,g(5)=loga4∈(2,4),与f(x)无交点,g(3)=loga2∈(1,2)与f(x)有两个交点,所以x>1时,g(x)与f(x)有3个交点,所以x∈R时,g(x)与f(x)有3对关于x=1对称的点,所以所以交点之和为2+2+2=6,即函数h(x)=f(x)﹣g(x)所有零点的和为6,故选:D.7.已知函数g(x)=a﹣x2(1𝑒≤x≤e(e为自然对数的底数)与h(x)=2lnx的图象上存在关于x轴对称的点,则实数a的取值范围是()A.[1,1𝑒+2]B.[1𝑒2+2,e2﹣2]C.[e2﹣2,+∞)D.[1,e2﹣2]【解答】解:因为h(x)=2lnx的图象上存在关于x轴对称的函数为:f(x)=﹣2lnx,所以可得g(x)=f(x)有零点,即a=x2﹣2lnx(1𝑒≤x≤e)有解,令t(x)=x2﹣2lnx(1𝑒≤x≤e),则t'(x)=2x−2𝑥=2⋅(𝑥−1)(𝑥+1)𝑥,当x∈(1𝑒,1)时,t'(x)<0,则t(x)单调递减,x∈(1,e)时,t(x)>0,t(x)单调递增,而t(1𝑒)=1𝑒2−2ln1𝑒=1𝑒2+2,t(1)=12﹣2ln1=1,t(e)=e2﹣2lne=e2﹣2>𝑡(1𝑒),所以t(x)∈[1,e2﹣2].所以a的取值范围为[1,e2﹣2].故选:D.8.已知函数f(x)=3e|x﹣1|﹣a(2x﹣1+21﹣x)﹣a2有唯一零点,则负实数a=()A.−13B.−12C.﹣3D.﹣2【解答】解:函数f(x)=3e|x﹣1|﹣a(2x﹣1+21﹣x)﹣a2有唯一零点,设x﹣1=t,则函数f(t)=3e|t|﹣a(2t+2﹣t)﹣a2有唯一零点,则3e|t|﹣a(2t+2﹣t)=a2,设g(t)=3e|t|﹣a(2t+2﹣t),∵g(﹣t)=3e|t|﹣a(2t+2﹣t)=g(t),∴g(t)为偶函数,∵函数f(t)有唯一零点,∴y=g(t)与y=a2有唯一的交点,∴此交点的横坐标为0,∴3﹣2a=a2,解得a=﹣3或a=1(舍去),故选:C.题型四.复合函数的零点1.已知f(x)=x2ex,若函数g(x)=f2(x)﹣kf(x)+1恰有四个零点,则实数k的取值范围是()A.(﹣∞,﹣2)∪(2,+∞)B.(2,4𝑒2+𝑒24)C.(8𝑒2,2)D.(4𝑒2+𝑒24,+∞)【解答】解:f′(x)=2xex+x2ex=x(x+2)ex,令f′(x)=0,解得x=0或x=﹣2,∴当x<﹣2或x>0时,f′(x)>0,当﹣2<x<0时,f′(x)<0,∴f(x)在(﹣∞,﹣2)上单调递增,在(﹣2,0)上单调递减,在(0,+∞)上单调递增,∴当x=﹣2时,函数f(x)取得极大值f(﹣2)=4𝑒2
本文标题:【新高考复习】专题05 函数 5.9函数零点 题型归纳讲义-2022届高三数学一轮复习(解析版)
链接地址:https://www.777doc.com/doc-12789443 .html