您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 专题05 立体几何(选填题)(理科专用)(教师版)
专题05立体几何(选填题)(理科专用)1.【2022年新高考1卷】南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔.时,相应水面的面积为.;水位为海拔.时,相应水面的面积为.,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔.上升到.时,增加的水量约为(√)()A.B.C.D.【答案】C【解析】【分析】根据题意只要求出棱台的高,即可利用棱台的体积公式求出.【详解】依题意可知棱台的高为(m),所以增加的水量即为棱台的体积.棱台上底面积,下底面积,∴(√)(√)(√)()().故选:C.2.【2022年新高考1卷】已知正四棱锥的侧棱长为l,其各顶点都在同一球面上.若该球的体积为,且√,则该正四棱锥体积的取值范围是()A.[]B.[]C.[]D.【答案】C【解析】【分析】设正四棱锥的高为,由球的截面性质列方程求出正四棱锥的底面边长与高的关系,由此确定正四棱锥体积的取值范围.【详解】∵球的体积为,所以球的半径,设正四棱锥的底面边长为,高为,则,(),所以,所以正四棱锥的体积()(),所以()(),当√时,,当√√时,,所以当√时,正四棱锥的体积取最大值,最大值为,又时,,√时,,所以正四棱锥的体积的最小值为,所以该正四棱锥体积的取值范围是[,].故选:C.3.【2022年新高考2卷】已知正三棱台的高为1,上、下底面边长分别为√和√,其顶点都在同一球面上,则该球的表面积为()A.B.C.D.【答案】A【解析】【分析】根据题意可求出正三棱台上下底面所在圆面的半径,再根据球心距,圆面半径,以及球的半径之间的关系,即可解出球的半径,从而得出球的表面积.【详解】设正三棱台上下底面所在圆面的半径,所以√√,即,设球心到上下底面的距离分别为,球的半径为,所以√,√,故||或,即|√√|或√√,解得符合题意,所以球的表面积为.故选:A.4.【2021年甲卷理科】2020年12月8日,中国和尼泊尔联合公布珠穆朗玛峰最新高程为8848.86(单位:m),三角高程测量法是珠峰高程测量方法之一.如图是三角高程测量法的一个示意图,现有A,B,C三点,且A,B,C在同一水平面上的投影,,ABC满足45ACB,60ABC.由C点测得B点的仰角为15,BB与CC的差为100;由B点测得A点的仰角为45,则A,C两点到水平面ABC的高度差AACC约为(31.732)()A.346B.373C.446D.473【答案】B【解析】【分析】通过做辅助线,将已知所求量转化到一个三角形中,借助正弦定理,求得''AB,进而得到答案.【详解】过C作'CHBB,过B作'BDAA,故''''''100100AACCAABBBHAABBAD,由题,易知ADB△为等腰直角三角形,所以ADDB.所以''100''100AACCDBAB.因为15BCH,所以100''tan15CHCB在'''ABC中,由正弦定理得:''''100100sin45sin75tan15cos15sin15ABCB,而62sin15sin(4530)sin45cos30cos45sin304,所以210042''100(31)27362AB,所以''''100373AACCAB.故选:B.【点睛】本题关键点在于如何正确将''AACC的长度通过作辅助线的方式转化为''100AB.5.【2021年甲卷理科】已如A,B,C是半径为1的球O的球面上的三个点,且,1ACBCACBC,则三棱锥OABC的体积为()A.212B.312C.24D.34【答案】A【解析】【分析】由题可得ABC为等腰直角三角形,得出ABC外接圆的半径,则可求得O到平面ABC的距离,进而求得体积.【详解】,1ACBCACBC,ABC为等腰直角三角形,2AB,则ABC外接圆的半径为22,又球的半径为1,设O到平面ABC的距离为d,则2222122d,所以1112211332212OABCABCVSd.故选:A.【点睛】关键点睛:本题考查球内几何体问题,解题的关键是正确利用截面圆半径、球半径、球心到截面距离的勾股关系求解.6.【2021年新高考1卷】已知圆锥的底面半径为2,其侧面展开图为一个半圆,则该圆锥的母线长为()A.2B.22C.4D.42【答案】B【解析】【分析】设圆锥的母线长为l,根据圆锥底面圆的周长等于扇形的弧长可求得l的值,即为所求.【详解】设圆锥的母线长为l,由于圆锥底面圆的周长等于扇形的弧长,则22l,解得22l.故选:B.7.【2021年新高考2卷】正四棱台的上、下底面的边长分别为2,4,侧棱长为2,则其体积为()A.20123B.282C.563D.2823【答案】D【解析】【分析】由四棱台的几何特征算出该几何体的高及上下底面面积,再由棱台的体积公式即可得解.【详解】作出图形,连接该正四棱台上下底面的中心,如图,因为该四棱台上下底面边长分别为2,4,侧棱长为2,所以该棱台的高2222222h,下底面面积116S,上底面面积24S,所以该棱台的体积121211282164642333VhSSSS.故选:D.8.【2020年新课标1卷理科】埃及胡夫金字塔是古代世界建筑奇迹之一,它的形状可视为一个正四棱锥,以该四棱锥的高为边长的正方形面积等于该四棱锥一个侧面三角形的面积,则其侧面三角形底边上的高与底面正方形的边长的比值为()A.514B.512C.514D.512【答案】C【解析】【分析】设,CDaPEb,利用212POCDPE得到关于,ab的方程,解方程即可得到答案.【详解】如图,设,CDaPEb,则22224aPOPEOEb,由题意212POab,即22142abab,化简得24()210bbaa,解得154ba(负值舍去).故选:C.【点晴】本题主要考查正四棱锥的概念及其有关计算,考查学生的数学计算能力,是一道容易题.9.【2020年新课标1卷理科】已知,,ABC为球O的球面上的三个点,⊙1O为ABC的外接圆,若⊙1O的面积为4π,1ABBCACOO,则球O的表面积为()A.64πB.48πC.36πD.32π【答案】A【解析】【分析】由已知可得等边ABC的外接圆半径,进而求出其边长,得出1OO的值,根据球的截面性质,求出球的半径,即可得出结论.【详解】设圆1O半径为r,球的半径为R,依题意,得24,2rr,ABC为等边三角形,由正弦定理可得2sin6023ABr,123OOAB,根据球的截面性质1OO平面ABC,222211111,4OOOAROAOOOAOOr,球O的表面积2464SR.故选:A【点睛】本题考查球的表面积,应用球的截面性质是解题的关键,考查计算求解能力,属于基础题.10.【2020年新课标2卷理科】如图是一个多面体的三视图,这个多面体某条棱的一个端点在正视图中对应的点为M,在俯视图中对应的点为N,则该端点在侧视图中对应的点为()A.EB.FC.GD.H【答案】A【解析】【分析】根据三视图,画出多面体立体图形,即可求得M点在侧视图中对应的点.【详解】根据三视图,画出多面体立体图形,14DD上的点在正视图中都对应点M,直线34BC上的点在俯视图中对应的点为N,∴在正视图中对应M,在俯视图中对应N的点是4D,线段34DD,上的所有点在侧试图中都对应E,∴点4D在侧视图中对应的点为E.故选:A【点睛】本题主要考查了根据三视图判断点的位置,解题关键是掌握三视图的基础知识和根据三视图能还原立体图形的方法,考查了分析能力和空间想象,属于基础题.11.【2020年新课标2卷理科】已知△ABC是面积为934的等边三角形,且其顶点都在球O的球面上.若球O的表面积为16π,则O到平面ABC的距离为()A.3B.32C.1D.32【答案】C【解析】【分析】根据球O的表面积和ABC的面积可求得球O的半径R和ABC外接圆半径r,由球的性质可知所求距离22dRr.【详解】设球O的半径为R,则2416R,解得:2R.设ABC外接圆半径为r,边长为a,ABC是面积为934的等边三角形,21393224a,解得:3a,22229933434ara,球心O到平面ABC的距离22431dRr.故选:C.【点睛】本题考查球的相关问题的求解,涉及到球的表面积公式和三角形面积公式的应用;解题关键是明确球的性质,即球心和三角形外接圆圆心的连线必垂直于三角形所在平面.12.【2020年新课标3卷理科】下图为某几何体的三视图,则该几何体的表面积是()A.6+42B.4+42C.6+23D.4+23【答案】C【解析】【分析】根据三视图特征,在正方体中截取出符合题意的立体图形,求出每个面的面积,即可求得其表面积.【详解】根据三视图特征,在正方体中截取出符合题意的立体图形根据立体图形可得:12222ABCADCCDBSSS△△△根据勾股定理可得:22ABADDBADB△是边长为22的等边三角形根据三角形面积公式可得:2113sin60(22)23222ADBSABAD△该几何体的表面积是:2362332.故选:C.【点睛】本题主要考查了根据三视图求立体图形的表面积问题,解题关键是掌握根据三视图画出立体图形,考查了分析能力和空间想象能力,属于基础题.13.【2020年新高考1卷(山东卷)】日晷是中国古代用来测定时间的仪器,利用与晷面垂直的晷针投射到晷面的影子来测定时间.把地球看成一个球(球心记为O),地球上一点A的纬度是指OA与地球赤道所在平面所成角,点A处的水平面是指过点A且与OA垂直的平面.在点A处放置一个日晷,若晷面与赤道所在平面平行,点A处的纬度为北纬40°,则晷针与点A处的水平面所成角为()A.20°B.40°C.50°D.90°【答案】B【解析】【分析】画出过球心和晷针所确定的平面截地球和晷面的截面图,根据面面平行的性质定理和线面垂直的定义判定有关截线的关系,根据点A处的纬度,计算出晷针与点A处的水平面所成角.【详解】画出截面图如下图所示,其中CD是赤道所在平面的截线;l是点A处的水平面的截线,依题意可知OAl;AB是晷针所在直线.m是晷面的截线,依题意依题意,晷面和赤道平面平行,晷针与晷面垂直,根据平面平行的性质定理可得可知//mCD、根据线面垂直的定义可得ABm..由于40,//AOCmCD,所以40OAGAOC,由于90OAGGAEBAEGAE,所以40BAEOAG,也即晷针与点A处的水平面所成角为40BAE.故选:B【点睛】本小题主要考查中国古代数学文化,考查球体有关计算,涉及平面平行,线面垂直的性质,属于中档题.14.【2019年新课标1卷理科】已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为A.86B.46C.26D.6【答案】D【解析】【分析】先证得PB平面PAC,再求得2PAPBPC,从而得PABC为正方体一部分,进而知正方体的体对角线即为球直径,从而得解.【详解】解法一:,PAPBPCABC为边长为2的等边三角形,PABC为正三棱锥,PBAC,又E,F分别为PA、AB中点,//EFPB,EFAC,又EFCE,,CEACCEF平面PAC,PB平面PAC,2APBPAPBPC,PABC为正方体一部分,22226R,即364466,62338RVR,故选
本文标题:专题05 立体几何(选填题)(理科专用)(教师版)
链接地址:https://www.777doc.com/doc-12797707 .html