您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2023年高考数学二轮复习(全国版理) 第2部分 思想方法 第5讲 客观题的解法
第5讲客观题的解法题型概述数学客观题,绝大多数是计算型(尤其是推理计算型)和概念(性质)判断型的试题,解答时必须按规则进行切实的计算或者合乎逻辑的推演和判断.其中选择题要充分利用题干和选项两方面提供的信息,尽量缩短解题时间,依据题目的具体特点,灵活、巧妙、快速地选择解法,基本策略是要在“准”“巧”“快”上下功夫.常用的方法有直接法、特殊化法、数形结合法、等价转化法等.方法一直接法直接法就是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,得出正确结论,此法是解选择题和填空题最基本、最常用的方法.例1(1)(2022·邯郸模拟)若向量a,b满足|a|=2,|b|=23,且a·b=3,则向量b与b-a夹角的余弦值为()A.32B.259C.7216D.33020思路分析根据平面向量数量积的运算性质,结合平面向量夹角公式进行求解即可.答案D解析因为|b|=23,且a·b=3,所以b·(b-a)=b2-b·a=(23)2-3=9,因为|b-a|=b-a2=b2+a2-2b·a=12+4-6=10,所以向量b与b-a夹角的余弦值为b·b-a|b|·|b-a|=923×10=33020.(2)(2022·湖北新高考协作体联考)已知数列{an}的前n项和Sn满足2Sn=n2+n(n∈N*),设bn=1an·an+1,则数列{bn}的前2023项和T2023=__________.思路分析根据数列中前n项和与项的关系,即可求通项,再利用裂项相消法求和.答案20232024解析∵2Sn=n2+n,∴Sn=n2+n2,当n≥2时,an=Sn-Sn-1=nn+12-n-1n2=n,a1=S1=1+12=1也符合上式,∴an=n,bn=1nn+1=1n-1n+1,∴T2023=1-12+12-13+…+12023-12024=20232024.规律方法直接法是解决计算型客观题最常用的方法,在计算过程中,我们要根据题目的要求灵活处理,多角度思考问题,注意一些解题规律和解题技巧的灵活应用,将计算过程简化从而得到结果,这是快速准确地求解选择题、填空题的关键.方法二特例法从题干出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或特殊图形或特殊位置,进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可以使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等.例2(1)若abc1且acb2,则()A.logablogbclogcaB.logcblogbalogacC.logbclogablogcaD.logbalogcblogac思路分析利用特值法或利用对数函数的图象与性质即可得到结果.答案B解析取a=5,b=4,c=3代入验证可知选项B正确.(2)在△ABC中,a,b,c分别是角A,B,C所对的边,B是A和C的等差中项,则a+c与2b的大小关系是()A.a+c2bB.a+c2bC.a+c≥2bD.a+c≤2b思路分析B是A,C的等差中项→赋值A,B,C→检验选项答案D解析①令A=30°,B=60°,C=90°,令c=2,则a=1,b=3,∴a+c=32b=23,②令A=B=C=60°,则a=b=c,∴a+c=2b,故a+c≤2b.规律方法特例法具有简化运算和推理的功效,比较适用于题目中含有字母或具有一般性结论的选择题,但用特例法解选择题时,要注意以下两点:第一,取特例尽可能简单,有利于计算和推理;第二,若在取定的特殊情况下有两个或两个以上的结论相符,则应选另一特例情况再检验,或改用其他方法求解.方法三排除法排除法也叫筛选法、淘汰法,它是充分利用选择题有且只有一个正确的选项这一特征,通过分析、推理、计算、判断,排除不符合要求的选项.例3(1)(2022·菏泽质检)函数f(x)=ex-e-xx2+|x|-2的图象可能为()思路分析利用排除法,先判断函数的奇偶性,再由函数值的变化情况判断答案C解析f(x)的定义域为{x|x≠±1},因为f(-x)=e-x-ex-x2+|-x|-2=-ex-e-xx2+|x|-2=-f(x),所以f(x)为奇函数,其图象关于原点对称,故排除A,D,当x0且x≠1时,f(x)=ex-e-xx2+x-2,当0x1时,x2+x-20,ex-e-x=e2x-1ex0,所以f(x)0,故排除B.(2)(2022·惠州模拟)已知函数f(x)是定义在R上的奇函数,当x0时,f(x)=ex(x+1),则下列说法正确的是()A.当x0时,f(x)=ex(1-x)B.f(x)0的解集为(-1,0)C.函数f(x)有2个零点D.∀x1,x2∈R,都有|f(x1)-f(x2)|2思路分析观察选项,从易于判断真假的选项出发答案D解析对于A,令x0,则-x0,∴f(-x)=e-x(1-x),又f(x)为奇函数,∴-f(x)=e-x(1-x),∴f(x)=e-x(x-1),故A错误;对于B,当x0时,令f(x)=ex(x+1)0,解得-1x0,当x0时,令f(x)=e-x(x-1)0,解得x1,综上,f(x)0的解集为(-1,0)∪(1,+∞),故B错误;对于C,当x0时,令f(x)=0⇒x=-1,当x0时,令f(x)=0⇒x=1,又f(x)是定义在R上的奇函数,f(0)=0,∴f(x)有3个零点分别为-1,0,1,故C错误.规律方法排除法使用要点:(1)从选项出发,先确定容易判断对错的选项,再研究其他选项.(2)当题目中的条件多于一个时,先根据某些条件在选项中找出明显与之矛盾的,予以否定,再根据另一些条件在缩小选项的范围内找出矛盾,这样逐步筛选,它与特值(例)法、验证法等常结合使用.方法四构造法用构造法解客观题的关键是利用已知条件和结论的特殊性构造出新的数学模型,它需要对基础知识和基本方法进行积累,需要从一般的方法原理中进行提炼概括,积极联想,横向类比,从曾经遇到的类似问题中寻找灵感,构造出相应的具体的数学模型,使问题简化.例4(1)已知三棱锥P-ABC的四个顶点在球O的球面上,PA=PB=PC,△ABC是边长为2的正三角形,E,F分别是PA,AB的中点,∠CEF=90°,则球O的体积为()A.86πB.46πC.26πD.6π思路分析求球O的体积→求球O的半径→构造正方体补形答案D解析如图所示,构造棱长为2的正方体,显然满足题设的一切条件,则球O就是该正方体的外接球,从而体积为6π.(2)(2022·广州模拟)已知定义在R上的函数f(x)满足12f(x)+f′(x)0,且有f(1)=12,则2f(x)12ex的解集为()A.(-∞,2)B.(1,+∞)C.(-∞,1)D.(2,+∞)思路分析构造函数Fx=fx·2ex,利用导数,结合已知条件判断Fx的单调性,由此化简不等式2fx12ex并求得其解集答案B解析设F(x)=f(x)·2ex,则F′(x)=f′(x)·2ex+12f(x)·2ex=2ex12fx+f′x0,所以函数F(x)在R上单调递增,又f(1)=12,所以F(1)=f(1)·12e=1212e.又2f(x)12ex等价于f(x)·2ex1212e,即F(x)F(1),所以x1,即所求不等式的解集为(1,+∞).规律方法构造法实质上是转化与化归思想在解题中的应用,需要根据已知条件和所要解决的问题确定构造的方向,通过构造新的函数、不等式或数列等新的模型,从而转化为自己熟悉的问题.方法五估算法因为选择题提供了唯一正确的答案,解答又不需提供过程,所以可以通过猜测、推理、估算而获得答案,这样往往可以减少运算量,但同时加强了思维的层次,估算省去了很多推导过程和复杂的计算,节省了时间,从而显得更加快捷.例5(1)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5-125-12≈0.618,称为黄金分割比例,著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是5-12.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cmB.175cmC.185cmD.190cm思路分析估计身高→人体各部分长度大致范围→题中长度关系估算答案B解析头顶至脖子下端的长度为26cm,可得咽喉至肚脐的长度小于42cm,肚脐至足底的长度小于110cm,则该人的身高小于178cm,又由肚脐至足底的长度大于105cm,可得头顶至肚脐的长度大于65cm,则该人的身高大于170cm,所以该人的身高在170cm~178cm之间.(2)设A,B,C,D是同一个半径为4的球的球面上四点,△ABC为等边三角形且其面积为93,则三棱锥D-ABC体积的最大值为()A.123B.183C.243D.543思路分析V三棱锥D-ABC最大值→三棱锥高的最大值→依据三棱锥和球的关系估算答案B解析等边三角形ABC的面积为93,显然球心不是此三角形的中心,所以三棱锥的体积最大时,三棱锥的高h应满足h∈(4,8),所以13×93×4V三棱锥D-ABC13×93×8,即123V三棱锥D-ABC243.规律方法估算法使用要点:(1)使用前提:针对一些复杂的、不易准确求值的与计算有关的问题.常与特值(例)法结合起来使用.(2)使用技巧:对于数值计算常采用放缩估算、整体估算、近似估算、特值估算等,对于几何体问题,常进行分割、拼凑、位置估算.
本文标题:2023年高考数学二轮复习(全国版理) 第2部分 思想方法 第5讲 客观题的解法
链接地址:https://www.777doc.com/doc-12798966 .html