您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第4节 空间直线、平面的垂直
第4节空间直线、平面的垂直考试要求从定义和基本事实出发,借助长方体,通过直观感知,了解空间中直线与直线、直线与平面、平面与平面的垂直关系.1.直线与平面垂直(1)直线和平面垂直的定义如果直线l与平面α内的任意一条直线都垂直,我们就说直线l与平面α互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理如果一条直线与一个平面内的两条相交直线垂直,那么该直线与此平面垂直l⊥al⊥ba∩b=Oa⊂αb⊂α⇒l⊥α性质定理垂直于同一个平面的两条直线平行a⊥αb⊥α⇒a∥b2.直线和平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的角叫做这条直线和这个平面所成的角,一条直线垂直于平面,则它们所成的角是90°;一条直线和平面平行或在平面内,则它们所成的角是0°.(2)范围:0,π2.3.二面角(1)定义:从一条直线出发的两个半平面所组成的图形叫做二面角.(2)二面角的平面角若有①O∈l;②OA⊂α,OB⊂β;③OA⊥l,OB⊥l,则二面角α-l-β的平面角是∠AOB.(3)二面角的平面角α的范围:0°≤α≤180°.4.平面与平面垂直(1)平面与平面垂直的定义两个平面相交,如果它们所成的二面角是直二面角,就说这两个平面互相垂直.(2)判定定理与性质定理文字语言图形表示符号表示判定定理如果一个平面过另一个平面的垂线,那么这两个平面垂直l⊥αl⊂β⇒α⊥β性质定理两个平面垂直,如果一个平面内有一直线垂直于这两个平面的交线,那么这条直线与另一个平面垂直α⊥βα∩β=al⊥al⊂β⇒l⊥α1.三个重要结论(1)若两平行线中的一条垂直于一个平面,则另一条也垂直于这个平面.(2)若一条直线垂直于一个平面,则它垂直于这个平面内的任何一条直线(证明线线垂直的一个重要方法).(3)垂直于同一条直线的两个平面平行.2.三种垂直关系的转化1.思考辨析(在括号内打“√”或“×”)(1)直线l与平面α内的无数条直线都垂直,则l⊥α.()(2)垂直于同一个平面的两平面平行.()(3)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.()(4)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.()答案(1)×(2)×(3)×(4)×解析(1)直线l与平面α内的无数条直线都垂直,则有l⊥α或l与α斜交或l⊂α或l∥α,故(1)错误.(2)垂直于同一个平面的两个平面平行或相交,故(2)错误.(3)若两个平面垂直,则其中一个平面内的直线可能垂直于另一平面,也可能与另一平面平行,也可能与另一平面相交,也可能在另一平面内,故(3)错误.(4)若平面α内的一条直线垂直于平面β内的所有直线,则α⊥β,故(4)错误.2.(2022·百校大联考)若m,n,l为空间三条不同的直线,α,β,γ为空间三个不同的平面,则下列为真命题的是()A.若m⊥l,n⊥l,则m∥nB.若m⊥β,m∥α,则α⊥βC.若α⊥γ,β⊥γ,则α∥βD.若α∩γ=m,β∩γ=n,m∥n,则α∥β答案B解析A中,m,n可能平行,相交或异面;C中,α与β可能平行或相交;D中,α与β可能平行或相交.故选B.3.(多选)已知两条不同的直线l,m和不重合的两个平面α,β,且l⊥β,下面四个命题正确的是()A.若m⊥β,则l∥mB.若α∥β,则l⊥αC.若α⊥β,则l∥αD.若l⊥m,则m∥β答案AB解析对于A,由l⊥β,m⊥β,可得l∥m,故A正确;对于B,若l⊥β,α∥β,可得l⊥α,故B正确;对于C,若l⊥β,α⊥β,则l∥α或l⊂α,故C错误;对于D,若l⊥β,l⊥m,则m∥β或m⊂β,故D错误.4.(2021·浙江卷)如图,已知正方体ABCD-A1B1C1D1,M,N分别是A1D,D1B的中点,则()A.直线A1D与直线D1B垂直,直线MN∥平面ABCDB.直线A1D与直线D1B平行,直线MN⊥平面BDD1B1C.直线A1D与直线D1B相交,直线MN∥平面ABCDD.直线A1D与直线D1B异面,直线MN⊥平面BDD1B1答案A解析连接AD1(图略),则易得点M在AD1上,且M为AD1的中点,AD1⊥A1D.因为AB⊥平面AA1D1D,A1D⊂平面AA1D1D,所以AB⊥A1D,又AB∩AD1=A,AB,AD1⊂平面ABD1,所以A1D⊥平面ABD1,又BD1⊂平面ABD1,显然A1D与BD1异面,所以A1D与BD1异面且垂直.在△ABD1中,由中位线定理可得MN∥AB,又MN⊄平面ABCD,AB⊂平面ABCD,所以MN∥平面ABCD.易知直线AB与平面BB1D1D成45°角,所以MN与平面BB1D1D不垂直.所以选项A正确.5.(多选)如图,PA垂直于以AB为直径的圆所在平面,C为圆上异于A,B的任意一点,AE⊥PC,垂足为E,点F是PB上一点,则下列判断中正确的是()A.BC⊥平面PACB.AE⊥EFC.AC⊥PBD.平面AEF⊥平面PBC答案ABD解析对于A,PA垂直于以AB为直径的圆所在平面,而BC⊂底面圆面,则PA⊥BC,又由圆的性质可知AC⊥BC,且PA∩AC=A,PA,AC⊂平面PAC,则BC⊥平面PAC,所以A正确;对于B,由A项可知BC⊥AE,由题意可知AE⊥PC,且BC∩PC=C,BC,PC⊂平面PCB,所以AE⊥平面PCB.而EF⊂平面PCB,所以AE⊥EF,所以B正确;对于C,由B项可知AE⊥平面PCB,因而AC与平面PCB不垂直,所以AC⊥PB不成立,所以C错误;对于D,由B项可知,AE⊥平面PCB,AE⊂平面AEF,由面面垂直的判定定理可得平面AEF⊥平面PBC,所以D正确.6.在三棱锥P-ABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的________心.(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的________心.答案(1)外(2)垂解析(1)如图1,连接OA,OB,OC,OP,图1在Rt△POA,Rt△POB和Rt△POC中,PA=PB=PC,所以OA=OB=OC,即O为△ABC的外心.(2)如图2,延长AO,BO,CO分别交BC,AC,AB于H,D,G.因为PC⊥PA,PB⊥PC,PA∩PB=P,所以PC⊥平面PAB.又AB⊂平面PAB,图2所以PC⊥AB.因为PO⊥AB,PO∩PC=P,所以AB⊥平面PGC,又CG⊂平面PGC,所以AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.考点一直线、平面垂直的判定与性质例1如图所示,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,E是PC的中点.证明:(1)CD⊥AE;(2)PD⊥平面ABE.证明(1)在四棱锥P-ABCD中,∵PA⊥底面ABCD,CD⊂平面ABCD,∴PA⊥CD.∵AC⊥CD,PA∩AC=A,∴CD⊥平面PAC.而AE⊂平面PAC,∴CD⊥AE.(2)由PA=AB=BC,∠ABC=60°,可得AC=PA.∵E是PC的中点,∴AE⊥PC.由(1)知AE⊥CD,且PC∩CD=C,∴AE⊥平面PCD.而PD⊂平面PCD,∴AE⊥PD.∵PA⊥底面ABCD,∴PA⊥AB.又∵AB⊥AD且PA∩AD=A,∴AB⊥平面PAD,而PD⊂平面PAD,∴AB⊥PD.又∵AB∩AE=A,∴PD⊥平面ABE.感悟提升(1)证明线面垂直的常用方法:①判定定理;②垂直于平面的传递性;③面面垂直的性质.(2)证明线面垂直的关键是证线线垂直,而证明线线垂直,则需借助线面垂直的性质.训练1如图,在四棱锥P-ABCD中,四边形ABCD是矩形,AB⊥平面PAD,AD=AP,E是PD的中点,M,N分别在AB,PC上,且MN⊥AB,MN⊥PC.证明:AE∥MN.证明∵AB⊥平面PAD,AE⊂平面PAD,∴AE⊥AB.又AB∥CD,∴AE⊥CD.∵AD=AP,E是PD的中点,∴AE⊥PD.又CD∩PD=D,CD,PD⊂平面PCD,∴AE⊥平面PCD.∵MN⊥AB,AB∥CD,∴MN⊥CD.又∵MN⊥PC,PC∩CD=C,PC,CD⊂平面PCD,∴MN⊥平面PCD,∴AE∥MN.考点二平面与平面垂直的判定与性质例2(2021·全国乙卷)如图,四棱锥P-ABCD的底面是矩形,PD⊥底面ABCD,M为BC的中点,且PB⊥AM.(1)证明:平面PAM⊥平面PBD;(2)若PD=DC=1,求四棱锥P-ABCD的体积.(1)证明∵PD⊥平面ABCD,AM⊂平面ABCD,∴PD⊥AM.∵PB⊥AM,且PB∩PD=P,PB,PD⊂平面PBD,∴AM⊥平面PBD.又AM⊂平面PAM,∴平面PAM⊥平面PBD.(2)解∵M为BC的中点,∴BM=12AD.由题意可知AB=DC=1.∵AM⊥平面PBD,BD⊂平面PBD,∴AM⊥BD,由∠BAM+∠MAD=90°,∠MAD+∠ADB=90°,得∠BAM=∠ADB,易得△BAM∽△ADB,所以BMAB=ABAD,即12AD1=1AD,得AD=2,所以S矩形ABCD=AD·DC=2×1=2,则四棱锥P-ABCD的体积VP-ABCD=13S矩形ABCD·PD=13×2×1=23.感悟提升(1)面面垂直判定的两种方法与一个转化①两种方法:(i)面面垂直的定义;(ii)面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).②一个转化:在已知两个平面垂直时,一般要用性质定理进行转化.在一个平面内作交线的垂线,转化为线面垂直,然后进一步转化为线线垂直.(2)面面垂直性质的应用①两平面垂直的性质定理是把面面垂直转化为线面垂直的依据,运用时要注意“平面内的直线”.②两个相交平面同时垂直于第三个平面,它们的交线垂直于第三个平面.训练2如图,在三棱柱ABC-A1B1C1中,∠ACB=∠AA1C=90°,平面AA1C1C⊥平面ABC.(1)求证:AA1⊥A1B;(2)若AA1=2,BC=3,∠A1AC=60°,求点C到平面A1ABB1的距离.(1)证明因为平面AA1C1C⊥平面ABC,平面AA1C1C∩平面ABC=AC,BC⊥AC,所以BC⊥平面AA1C1C.又AA1⊂平面AA1C1C,所以BC⊥AA1.因为∠AA1C=90°,所以AA1⊥A1C.又因为BC∩A1C=C,所以AA1⊥平面A1BC.又A1B⊂平面A1BC,所以AA1⊥A1B.(2)解由(1)可知A1A⊥平面A1BC,A1A⊂平面A1ABB1,所以平面A1BC⊥平面A1ABB1,且交线为A1B,所以点C到平面A1ABB1的距离等于△CA1B的A1B边上的高,设其为h.在Rt△AA1C中,A1A=2,∠A1AC=60°,则A1C=23.由(1)得BC⊥A1C,所以在Rt△A1CB中,BC=3,A1B=21,h=BC·A1CA1B=6321=677.故点C到平面A1ABB1的距离为677.考点三平行、垂直关系的综合应用例3如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAD⊥平面ABCD,PA⊥PD,PA=PD,E,F分别为AD,PB的中点.求证:(1)PE⊥BC;(2)平面PAB⊥平面PCD;(3)EF∥平面PCD.证明(1)因为PA=PD,E为AD的中点,所以PE⊥AD.因为底面ABCD为矩形,所以BC∥AD,所以PE⊥BC.(2)因为底面ABCD为矩形,所以AB⊥AD.又因为平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,AB⊂平面ABCD,所以AB⊥平面PAD.又PD⊂平面PAD,所以AB⊥PD.又因为PA⊥PD,且PA∩AB=A,所以PD⊥平面PAB.又PD⊂平面PCD,所以平面PAB⊥平面PCD.(3)如图,取PC中点G,连接FG,DG.因为F,G分别为PB,PC的中点,所以FG∥BC,FG=12BC.因为ABCD为矩形,且E为AD的中点,所以DE∥BC,DE=12BC,所以DE∥FG,DE=FG,所以四边形DEFG为平行四边形,所以EF∥DG.又因为EF⊄平面PCD,DG⊂平面PCD,所以EF∥平面PC
本文标题:第4节 空间直线、平面的垂直
链接地址:https://www.777doc.com/doc-12816578 .html