您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第4节 直线与圆、圆与圆的位置关系
第4节直线与圆、圆与圆的位置关系考试要求1.能根据给定直线、圆的方程判断直线与圆、圆与圆的位置关系.2.能用直线和圆的方程解决一些简单的数学问题与实际问题.1.直线与圆的位置关系设圆C:(x-a)2+(y-b)2=r2,直线l:Ax+By+C=0,圆心C(a,b)到直线l的距离为d,由(x-a)2+(y-b)2=r2,Ax+By+C=0消去y(或x),得到关于x(或y)的一元二次方程,其判别式为Δ.位置关系相离相切相交图形量化方程观点Δ0Δ=0Δ0几何观点drd=rdr2.圆与圆的位置关系已知两圆C1:(x-x1)2+(y-y1)2=r21,C2:(x-x2)2+(y-y2)2=r22,则圆心距d=|C1C2|=(x1-x2)2+(y1-y2)2.则两圆C1,C2有以下位置关系:位置关系外离内含相交内切外切圆心距与半径的关系dr1+r2d|r1-r2||r1-2|dr1+r2d=|r1-r2|d=r1+r2图示公切线条数402131.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆x2+y2=r2外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程为x0x+y0y=r2.2.直线被圆截得的弦长的求法(1)几何法:运用弦心距d、半径r和弦长的一半构成的直角三角形,计算弦长|AB|=2r2-d2.(2)代数法:设直线y=kx+m与圆x2+y2+Dx+Ey+F=0相交于点M,N,将直线方程代入圆的方程中,消去y,得关于x的一元二次方程,求出xM+xN和xM·xN,则|MN|=1+k2·(xM+xN)2-4xM·xN.1.思考辨析(在括号内打“√”或“×”)(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的必要不充分条件.()(2)如果两个圆的方程组成的方程组只有一组实数解,则两圆外切.()(3)如果两圆的圆心距小于两圆的半径之和,则两圆相交.()(4)过圆O:x2+y2=r2外一点P(x0,y0)作圆的两条切线,切点分别为A,B,则O,P,A,B四点共圆,且直线AB的方程是x0x+y0y=r2.()答案(1)×(2)×(3)×(4)√解析(1)“k=1”是“直线x-y+k=0与圆x2+y2=1相交”的充分不必要条件;(2)除外切外,还有可能内切;(3)两圆还可能内切或内含.2.(多选)直线x-y+m=0与圆x2+y2-2x-1=0有两个不同交点的一个充分不必要条件是()A.0<m<1B.-1<m<0C.m<1D.-3<m<1答案AB解析联立直线与圆的方程得x-y+m=0,x2+y2-2x-1=0,消去y,得2x2+(2m-2)x+m2-1=0,根据题意得Δ=(2m-2)2-8(m2-1)=-4(m+1)2+16>0,得-3<m<1.∵{m|0<m<1}{m|-3<m<1},{m|-1<m<0}{m|-3<m<1},∴0<m<1和-1<m<0都是直线与圆相交的充分不必要条件.3.(多选)(2021·新高考Ⅱ卷)已知直线l:ax+by-r2=0与圆C:x2+y2=r2,点A(a,b),则下列说法正确的是()A.若点A在圆C上,则直线l与圆C相切B.若点A在圆C内,则直线l与圆C相离C.若点A在圆C外,则直线l与圆C相离D.若点A在直线l上,则直线l与圆C相切答案ABD解析圆心C(0,0)到直线l的距离d=r2a2+b2.若点A(a,b)在圆C上,则a2+b2=r2,所以d=r2a2+b2=|r|,则直线l与圆C相切,故A正确;若点A(a,b)在圆C内,则a2+b2r2,所以d=r2a2+b2|r|,则直线l与圆C相离,故B正确;若点A(a,b)在圆C外,则a2+b2r2,所以d=r2a2+b2|r|,则直线l与圆C相交,故C错误;若点A(a,b)在直线l上,则a2+b2-r2=0即a2+b2=r2,所以d=r2a2+b2=|r|,直线l与圆C相切,故D正确.4.两圆x2+y2-2y=0与x2+y2-4=0的位置关系是________.答案内切5.直线l:3x-y-6=0与圆x2+y2-2x-4y=0相交于A,B两点,则|AB|=______.答案10解析由x2+y2-2x-4y=0得(x-1)2+(y-2)2=5,所以该圆的圆心坐标为(1,2),半径r=5.又圆心(1,2)到直线3x-y-6=0的距离为d=|3-2-6|9+1=102,由|AB|22=r2-d2,得|AB|2=10,即|AB|=10.6.(2020·浙江卷)已知直线y=kx+b(k>0)与圆x2+y2=1和圆(x-4)2+y2=1均相切,则k=__________,b=__________.答案33-233解析如图,直线分别与两个半径相等的圆相切,由对称性可知,直线与x轴的交点为A(2,0).由AB=2,BM=1,∠AMB=90°,得∠MAB=30°,可得直线的斜率k=tan30°=33,直线方程为y=33(x-2)=33x-233,因此b=-233.考点一直线与圆的位置关系1.已知点M(a,b)在圆O:x2+y2=1外,则直线ax+by=1与圆O的位置关系是()A.相切B.相交C.相离D.不确定答案B解析因为M(a,b)在圆O:x2+y2=1外,所以a2+b2>1,而圆心O到直线ax+by=1的距离d=|a·0+b·0-1|a2+b2=1a2+b2<1.所以直线与圆相交.2.(多选)已知圆C:(x-1)2+(y-2)2=25,直线l:(2m+1)x+(m+1)y-7m-4=0.则以下几个命题正确的有()A.直线l恒过定点(3,1)B.直线l与圆C相切C.直线l与圆C恒相交D.直线l与圆C相离答案AC解析将直线l的方程整理为x+y-4+m(2x+y-7)=0,由x+y-4=0,2x+y-7=0,解得x=3,y=1.则无论m为何值,直线l过定点(3,1),故直线l与圆C恒相交,故AC正确.3.若圆x2+y2=r2(r>0)上恒有4个点到直线l:x-y-2=0的距离为1,则实数r的取值范围是()A.(2+1,+∞)B.(2-1,2+1)C.(0,2-1)D.(0,2+1)答案A解析计算得圆心到直线l的距离为22=2>1,如图.直线l:x-y-2=0与圆相交,l1,l2与l平行,且与直线l的距离为1,故可以看出,圆的半径应该大于圆心到直线l2的距离2+1.感悟提升判断直线与圆的位置关系的常见方法(1)几何法:利用d与r的关系.(2)代数法:联立方程之后利用Δ判断.(3)点与圆的位置关系法:若直线恒过定点且定点在圆内,可判断直线与圆相交.考点二圆的切线、弦长问题角度1圆的弦长问题例1(1)(多选)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法中正确的是()A.圆M的圆心为(4,-3)B.圆M被x轴截得的弦长为8C.过原点的最短弦长为8D.圆M被y轴截得的弦长为6答案ABD解析圆M的一般方程为x2+y2-8x+6y=0,则(x-4)2+(y+3)2=25.圆的圆心坐标为(4,-3),半径为5.过原点的最短弦长为6,选项C不正确.ABD均正确.(2)(2020·天津卷)已知直线x-3y+8=0和圆x2+y2=r2(r>0)相交于A,B两点.若|AB|=6,则r的值为__________.答案5解析由题意知圆心为O(0,0),圆心到直线的距离d=|0-3×0+8|1+3=4.取AB的中点M,连接OM(图略),则OM⊥AB.在Rt△OMA中,r=|AB|22+d2=5.感悟提升弦长的两种求法(1)代数方法:将直线和圆的方程联立方程组,消元后得到一个一元二次方程.在判别式Δ>0的前提下,利用根与系数的关系,根据弦长公式求弦长.(2)几何方法:若弦心距为d,圆的半径长为r,则弦长l=2r2-d2.角度2圆的切线问题例2(1)过点P(2,4)引圆C:(x-1)2+(y-1)2=1的切线,则切线方程为________.答案x=2或4x-3y+4=0解析当直线的斜率不存在时,直线方程为x=2,此时,圆心到直线的距离等于半径,直线与圆相切,符合题意;当直线的斜率存在时,设直线方程为y-4=k(x-2),即kx-y+4-2k=0,∵直线与圆相切,∴圆心到直线的距离等于半径,即d=|k-1+4-2k|k2+(-1)2=|3-k|k2+1=1,解得k=43,∴所求切线方程为43x-y+4-2×43=0,即4x-3y+4=0.综上,切线方程为x=2或4x-3y+4=0.(2)点P为射线x=2(y≥0)上一点,过P作圆x2+y2=3的两条切线,若两条切线的夹角为90°,则点P的坐标为()A.(2,1)B.(2,2)C.(2,2)D.(2,0)答案C解析如图所示.设切点为A,B,则OA⊥AP,OB⊥BP,OA=OB,AP=BP,AP⊥BP,故四边形OAPB为正方形,则|OP|=6,又xP=2,则P(2,2).感悟提升求过某点的圆的切线问题时,应首先确定点与圆的位置关系,再求切线方程.若点在圆上(即为切点),则过该点的切线只有一条;若点在圆外,则过该点的切线有两条,此时注意斜率不存在的切线.训练1(1)(2022·郑州调研)已知圆C:(x-1)2+(y+1)2=1与直线kx+y+1=0相交于A,B两点,若△CAB为等边三角形,则k的值为()A.±3B.±2C.±32D.±22答案A解析圆C:(x-1)2+(y+1)2=1的圆心为C(1,-1),半径为1,故|CB|=|CA|=1,又△CAB为等边三角形,所以点C到直线kx+y+1=0的距离为32,即|k|12+k2=32,解得k=±3,故选A.(2)在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为______.答案102解析圆的标准方程为(x-1)2+(y-3)2=10,则圆心(1,3),半径r=10,圆心(1,3)与E(0,1)距离(1-0)2+(3-1)2=5,由题意知AC⊥BD,且|AC|=210,|BD|=210-5=25,所以四边形ABCD的面积为S=12|AC|·|BD|=12×210×25=102.(3)若一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为________.答案-43或-34解析点A(-2,-3)关于y轴的对称点为A′(2,-3),故可设反射光线所在直线的方程为y+3=k(x-2),化为kx-y-2k-3=0,∵反射光线与圆(x+3)2+(y-2)2=1相切,∴圆心(-3,2)到直线的距离d=|-3k-2-2k-3|k2+1=1.化为24k2+50k+24=0,∴k=-43或k=-34.考点三圆与圆的位置关系例3已知两圆x2+y2-2x-6y-1=0和x2+y2-10x-12y+m=0.求:(1)m取何值时两圆外切?(2)求m=45时两圆的公共弦所在直线的方程和公共弦的长.解两圆的标准方程分别为(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m,圆心分别为M(1,3),N(5,6),半径分别为11和61-m.(1)当两圆外切时,(5-1)2+(6-3)2=11+61-m.解得m=25+1011.(2)两圆的公共弦所在直线的方程为(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,即4x+3y-23=0.由圆的半径、弦长、弦心距间的关系,不难求得公共弦的长为2×(11)2-|4+3×3-23|42+322=27.感悟提升1.判断两圆的位置关系时常用几何法,即利用两圆圆心之间的距离与两圆半径之间的关系,一般不采用代数法.2.若两圆相交,则两圆公共弦所在直线的方程可由两圆的方程作差消去x2,y2项得到.训练2(1)已知圆M:x2+y2-2ay=0(a
本文标题:第4节 直线与圆、圆与圆的位置关系
链接地址:https://www.777doc.com/doc-12816681 .html