您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 第01讲 集合(练习)(解析版)
第01讲集合(模拟精练+真题演练)1.(2023·甘肃张掖·统考模拟预测)设全集2,1,0,2,3U,若集合2,1,3,2,1,0AB,则()UABð()A.{-2,0,2,3}B.{-2,2,3}C.{0,2,3}D.{-2,-1}【答案】C【解析】由2,1,3,2,1,0,AB得2,1AB,所以()0,2,3UABð,故选:C.2.(2023·黑龙江齐齐哈尔·统考一模)设全集N50Uxxx,集合1,2,3A,2,4B,则BUAð=()A.1,3B.2,4,5C.1,3,5D.0,2,4,5【答案】D【解析】因为全集N500,1,2,3,4,5Uxxx,1,2,3A,所以UAð0,4,5,又因为2,4B,所以BUAð0,2,4,5故选:D.3.(2023·内蒙古包头·统考二模)设集合240Axx,3,1,2,3B,则AB()A.3,1B.1,3C.1,2D.3,3【答案】C【解析】由240Axx得22Axx,所以AB1,2,故选:C4.(2023·内蒙古包头·二模)设集合240,{02}AxxBxxb∣∣,且{24}ABxx∣,则b()A.6B.8C.8D.6【答案】C【解析】由240x,可得2x或2x,即|2Axx或2x,而02bBxx∣,∵{24}ABxx∣,∴42b,可得8b.故选:C5.(2023·天津河东·一模)已知集合21,3,Aa,{1,2}Ba,ABA,则实数a的值为()A.{2}B.{1,2}C.{1,2}D.{0,2}【答案】A【解析】由ABA知:BA,当23a,即1a,则21a,与集合中元素互异性有矛盾,不符合;当22aa,即1a或2a,若1a,则21a,与集合中元素互异性有矛盾,不符合;若2a,则1,3,4A,{1,4}B,满足要求.综上,2a.故选:A6.(2023·河北张家口·统考一模)已知集合{0,1,2,3,4,5,6,7,8,9}U,2log(2)2AxxN∣,0,2,4,5,7,8B,则()UABð()A.{0,1,2,3,6,7,8,9}B.{1,9}C.{0,2,3,4,5,7,8}D.{4,5}【答案】B【解析】由22log(2)2log4x,得024x,故26x,所以{3,4,5,6}A,{0,2,3,4,5,6,7,8}AB,(){1,9}UABð.故选:B.7.(2023·辽宁大连·统考一模)如图所示的Venn图中,A、B是非空集合,定义集合AB为阴影部分表示的集合.若21,,4AxxnnnN,2,3,4,5,6,7B,则AB()A.2,4,6,1B.2,4,6,9C.2,3,4,5,6,7D.1,2,4,6,9【答案】D【解析】由韦恩图可知,,ABxxABxAB,因为21,,41,3,5,7,9AxxnnnN,2,3,4,5,6,7B,则1,2,3,4,5,6,7,9AB,3,5,7AB,因此,1,2,4,6,9AB.故选:D.8.(2023·江苏南通·模拟预测)已知P,Q为R的两个非空真子集,若RQðPRð,则下列结论正确的是()A.xQ,xPB.0RxPð,0RxQðC.0xQ,0xPD.RxPð,RxQð【答案】B【解析】因为RQðRPð,所以PQ,如图,对于选项A:由题意知P是Q的真子集,故xQ,xP,故不正确,对于选项B:由RQð是RPð的真子集且RQð,RPð都不是空集知,0RxPð,0RxQð,故正确.对于选项C:由RQð是RPð的真子集知,xQ,xP,故不正确,对于选项D:Q是RPð的真子集,故RxPð,RxQð,故不正确,故选:B9.(2023·广西南宁·统考二模)已知集合22Axyx,12Bxx,则RABð()A.2,1B.2,1C.2,2D.2,1【答案】B【解析】由题意得220x,解得22x,故2,2A,因为R,12,Bð,故R[2,1]ABð.故选:B.10.(2023·广西南宁·统考二模)已知集合2,1,2,3A,12Bxx,则RABð()A.1,2B.2,3C.2,1,2D.2,2,3【答案】D【解析】因为12Bxx,所以R1Bxxð或2x,又2,1,2,3A,所以RABð2,2,3,故A,B,C错误.故选:D.11.(2023·陕西商洛·校考三模)设全集22,4,Ua,集合4,2Aa,UAað,则实数a的值为()A.0B.-1C.2D.0或2【答案】A【解析】由集合4,2Aa知,24a,即2a,而UAað,全集22,4,Ua,因此,222aaa,解得0a,经验证0a满足条件,所以实数a的值为0.故选:A12.(2023·湖北武汉·华中师大一附中校联考模拟预测)已知集合21Axx,1Bxxa,若AB中有且仅有三个整数,则正数a的取值范围是()A.01aB.01aC.1aD.2a【答案】B【解析】由题意可得11Axx,11Bxaxa,若AB中有且仅有三个整数,则只能是1,0,1,故2112aa,解得01a,故选:B.13.(2023·湖南怀化·统考二模)已知集合1,1,2,3,4,5,1,2,4,MNPMN,则P的真子集共有()A.3个B.6个C.7个D.8个【答案】C【解析】因为1,1,2,3,4,5,1,2,4MN,所以=1,2,4PMN,所以P的真子集共有3217个.故选:C.14.(2023·全国·本溪高中校联考模拟预测)对于集合A,B,定义集合ABxxA且xB,已知集合37,ZUxxx,1,0,2,4,6E,0,3,4,5F,则UEFð()A.2,0,1,3,4,5B.0,1,3,4,5C.1,2,6D.2,0,1,3,4【答案】A【解析】结合新定义可知1,2,6EF,又2,1,0,1,2,3,4,5,6U,所以2,0,1,3,4,5UEFð.故选:A15.(2023·全国·高三专题练习)建党百年之际,影片《1921》《长津湖》《革命者》都已陆续上映,截止2021年10月底,《长津湖》票房收入已超56亿元,某市文化调查机构,在至少观看了这三部影片中的其中一部影片的市民中随机抽取了100人进行调查,得知其中观看了《1921》的有51人,观看了《长津湖》的有60人,观看了《革命者》的有50人,数据如图,则图中a___________;b___________;c___________.【答案】9810【解析】由题意得:286513566026650abacbc,解得:9810abc.故答案为:9;8;10.1.(2023•北京)已知集合{|20}Mxx…,{|10}Nxx.则(MN)A.{|21}xx„B.{|21}xx„C.{|2}xx…D.{|1}xx【答案】A【解析】由题意,{|2}Mxx…,{|1}Nxx,{|21}MNxx„.故选:A.2.(2023•乙卷)设集合UR,集合{|1}Mxx,{|12}Nxx,则{|2}(xx…)A.()UMNðB.UNMðC.()UMNðD.UMNð【答案】A【解析】由题意:{|2}MNxx,又UR,(){|2}UCMNxx….故选:A.3.(2023•甲卷)设集合{|31Axxk,}kZ,{|32Bxxk,}kZ,U为整数集,则()(UABð)A.{|3xxk,}kZB.{|31xxk,}kZC.{|32xxk,}kZD.【答案】A【解析】{|31Axxk,}kZ,{|32Bxxk,}kZ,{|31ABxxk或32xk,}kZ,又U为整数集,(){|3UABxxkð,}kZ.故选:A.4.(2023•新高考Ⅰ)已知集合{2M,1,0,1,2},2{|60}Nxxx…,则(MN)A.{2,1,0,1}B.{0,1,2}C.{2}D.{2}【答案】C【解析】260xx…,(3)(2)0xx…,3x…或2x„,(N,2][3,),则{2}MN.故选:C.5.(2023•天津)已知集合{1U,2,3,4,5},{1A,3},{1B,2,4},则(UBAð)A.{1,3,5}B.{1,3}C.{1,2,4}D.{1,2,4,5}【答案】A【解析】{1U,2,3,4,5},{1A,3},{1B,2,4},则{3UCB,5},故{1UBAð,3,5}.故选:A.6.(2023•新高考Ⅱ)设集合{0A,}a,{1B,2a,22}a,若AB,则(a)A.2B.1C.23D.1【答案】B【解析】依题意,20a或220a,当20a时,解得2a,此时{0A,2},{1B,0,2},不符合题意;当220a时,解得1a,此时{0A,1},{1B,1,0},符合题意.故选:B.7.(2023•上海)已知{1P,2},{2Q,3},若{|MxxP,}xQ,则(M)A.{1}B.{2}C.{3}D.{1,2,3}【答案】A【解析】{1P,2},{2Q,3},{|MxxP,}xQ,{1}M.故选:A.8.(2022•天津)设全集{2U,1,0,1,2},集合{0A,1,2},{1B,2},则()(UABð)A.{0,1}B.{0,1,2}C.{1,1,2}D.{0,1,1,2}【答案】A【解析】全集{2U,1,0,1,2},集合{0A,1,2},{1B,2},则(){0UABð,1,2}{2,0,1}{0,1}.故选:A.9.(2022•新高考Ⅰ)若集合{|4}Mxx,{|31}Nxx…,则(MN)A.{|02}xx„B.1{|2}3xx„C.{|316}xx„D.1{|16}3xx„【答案】D【解析】由4x,得016x„,{|4}{|016}Mxxxx„,由31x…,得13x…,1{|31}{|}3Nxxxx厖,11{|016}{|}{|16}33MNxxxxxx剠?.故选:D.10.(2022•乙卷)设全集{1U,2,3,4,5},集合M满足{1UMð,3},则()A.2MB.3MC.4MD.5M【答案】A【解析】因为全集{1U,2,3,4,5},{1UMð,3},所以{2M,4,5},所以2M,3M,4M,5M.故选:A.11.(2022•新高考Ⅱ)已知集合{1A,1,2,4},{||1|1}Bxx„,则(AB)A.{1,2}B.{1,2}C.{1,4}D.{1,4}【答案】B【解析】|1|1x„,解得:02x剟,集合{|02}Bxx剟{1AB,2}.故选:
本文标题:第01讲 集合(练习)(解析版)
链接地址:https://www.777doc.com/doc-12817193 .html