您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 圆的标准方程-练习题
第四章4.14.1.1A级基础巩固一、选择题1.圆心是(4,-1),且过点(5,2)的圆的标准方程是()A.(x-4)2+(y+1)2=10B.(x+4)2+(y-1)2=10C.(x-4)2+(y+1)2=100D.(x-4)2+(y+1)2=102.已知圆的方程是(x-2)2+(y-3)2=4,则点P(3,2)满足()A.是圆心B.在圆上C.在圆内D.在圆外3.圆(x+1)2+(y-2)2=4的圆心坐标和半径分别为()A.(-1,2),2B.(1,-2),2C.(-1,2),4D.(1,-2),44.(2016·锦州高一检测)若圆C与圆(x+2)2+(y-1)2=1关于原点对称,则圆C的方程是()A.(x-2)2+(y+1)2=1B.(x-2)2+(y-1)2=1C.(x-1)2+(y+2)2=1D.(x+1)2+(y+2)2=15.(2016·全国卷Ⅱ)圆x2+y2-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,则a=()A.-43B.-34C.3D.26.若P(2,-1)为圆(x-1)2+y2=25的弦AB的中点,则直线AB的方程是(A)A.x-y-3=0B.2x+y-3=0C.x+y-1=0D.2x-y-5=0二、填空题7.以点(2,-1)为圆心且与直线x+y=6相切的圆的方程是.8.圆心既在直线x-y=0上,又在直线x+y-4=0上,且经过原点的圆的方程是三、解答题9.圆过点A(1,-2)、B(-1,4),求(1)周长最小的圆的方程;(2)圆心在直线2x-y-4=0上的圆的方程.10.已知圆N的标准方程为(x-5)2+(y-6)2=a2(a0).(1)若点M(6,9)在圆上,求a的值;(2)已知点P(3,3)和点Q(5,3),线段PQ(不含端点)与圆N有且只有一个公共点,求a的取值范围.B级素养提升一、选择题1.(2016~2017·宁波高一检测)点12,32与圆x2+y2=12的位置关系是()A.在圆上B.在圆内C.在圆外D.不能确定2.若点(2a,a-1)在圆x2+(y+1)2=5的内部,则a的取值范围是()A.(-∞,1]B.(-1,1)C.(2,5)D.(1,+∞)3.若点P(1,1)为圆(x-3)2+y2=9的弦MN的中点,则弦MN所在直线方程为()A.2x+y-3=0B.x-2y+1=0C.x+2y-3=0D.2x-y-1=04.点M在圆(x-5)2+(y-3)2=9上,则点M到直线3x+4y-2=0的最短距离为()A.9B.8C.5D.2二、填空题5.已知圆C经过A(5,1)、B(1,3)两点,圆心在x轴上,则C的方程为____.6.以直线2x+y-4=0与两坐标轴的一个交点为圆心,过另一个交点的圆的方程为____.C级能力拔高1.如图,矩形ABCD的两条对角线相交于点M(2,0),AB边所在直线的方程为x-3y-6=0,点T(-1,1)在AD边所在的直线上.求AD边所在直线的方程.2.求圆心在直线4x+y=0上,且与直线l:x+y-1=0切于点P(3,-2)的圆的方程,并找出圆的圆心及半径.第四章4.14.1.2A级基础巩固一、选择题1.圆x2+y2-4x+6y=0的圆心坐标是()A.(2,3)B.(-2,3)C.(-2,-3)D.(2,-3)2.(2016~2017·曲靖高一检测)方程x2+y2+2ax-by+c=0表示圆心为C(2,2),半径为2的圆,则a,b,c的值依次为()A.-2,4,4B.-2,-4,4C.2,-4,4D.2,-4,-43.(2016~2017·长沙高一检测)已知圆C过点M(1,1),N(5,1),且圆心在直线y=x-2上,则圆C的方程为()A.x2+y2-6x-2y+6=0B.x2+y2+6x-2y+6=0C.x2+y2+6x+2y+6=0D.x2+y2-2x-6y+6=04.设圆的方程是x2+y2+2ax+2y+(a-1)2=0,若0a1,则原点与圆的位置关系是()A.在圆上B.在圆外C.在圆内D.不确定5.若圆x2+y2-2x-4y=0的圆心到直线x-y+a=0的距离为22,则a的值为()A.-2或2B.12或32C.2或0D.-2或06.圆x2+y2-2y-1=0关于直线y=x对称的圆的方程是()A.(x-1)2+y2=2B.(x+1)2+y2=2C.(x-1)2+y2=4D.(x+1)2+y2=4二、填空题7.圆心是(-3,4),经过点M(5,1)的圆的一般方程为____.8.设圆x2+y2-4x+2y-11=0的圆心为A,点P在圆上,则PA的中点M的轨迹方程是_三、解答题9.判断方程x2+y2-4mx+2my+20m-20=0能否表示圆,若能表示圆,求出圆心和半径.10.求过点A(-1,0)、B(3,0)和C(0,1)的圆的方程.B级素养提升一、选择题1.若圆x2+y2-2ax+3by=0的圆心位于第三象限,那么直线x+ay+b=0一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.在圆x2+y2-2x-6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面只为()A.52B.102C.152D.2023.若点(2a,a-1)在圆x2+y2-2y-5a2=0的内部,则a的取值范围是()A.(-∞,45]B.(-43,43)C.(-34,+∞)D.(34,+∞)4.若直线l:ax+by+1=0始终平分圆M:x2+y2+4x+2y+1=0的周长,则(a-2)2+(b-2)2的最小值为()二、填空题5.已知圆C:x2+y2+2x+ay-3=0(a为实数)上任意一点关于直线l:x-y+2=0的对称点都在圆C上,则a6.若实数x、y满足x2+y2+4x-2y-4=0,则x2+y2的最大值是___.C级能力拔高1.设圆的方程为x2+y2=4,过点M(0,1)的直线l交圆于点A、B,O是坐标原点,点P为AB的中点,当l绕点M旋转时,求动点P的轨迹方程.2.已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一个圆.(1)求实数m的取值范围;(2)求该圆的半径r的取值范围;(3)求圆心C的轨迹方程.第四章4.24.2.1A级基础巩固一、选择题1.若直线3x+y+a=0平分圆x2+y2+2x-4y=0,则a的值为()A.-1B.1C.3D.-32.(2016·高台高一检测)已知直线ax+by+c=0(a、b、c都是正数)与圆x2+y2=1相切,则以a、b、c为三边长的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.不存在3.(2016·北京文)圆(x+1)2+y2=2的圆心到直线y=x+3的距离为()A.1B.2C.2D.22[4.(2016·铜仁高一检测)直线x+y=m与圆x2+y2=m(m0)相切,则m=()A.12B.22C.2D.25.圆心坐标为(2,-1)的圆在直线x-y-1=0上截得的弦长为22,那么这个圆的方程为()A.(x-2)2+(y+1)2=4B.(x-2)2+(y+1)2=2C.(x-2)2+(y+1)2=8D.(x-2)2+(y+1)2=166.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有()A.1个B.2个C.3个D.4个二、填空题7.(2016·天津文)已知圆C的圆心在x轴的正半轴上,点M(0,5)在圆C上,且圆心到直线2x-y=0的距离为455,则圆C的方程为____.8.过点(3,1)作圆(x-2)2+(y-2)2=4的弦,其中最短弦的长为____.三、解答题9.当m为何值时,直线x-y-m=0与圆x2+y2-4x-2y+1=0有两个公共点?有一个公共点?无公共点10.(2016·潍坊高一检测)已知圆C:x2+(y-1)2=5,直线l:mx-y+1-m=0.(1)求证:对m∈R,直线l与圆C总有两个不同的交点;(2)若直线l与圆C交于A、B两点,当|AB|=17时,求m的值.B级素养提升一、选择题1.过点(2,1)的直线中,被圆x2+y2-2x+4y=0截得的弦最长的直线的方程是()A.3x-y-5=0B.3x+y-7=0C.3x-y-1=0D.3x+y-5=02.(2016·泰安二中高一检测)已知2a2+2b2=c2,则直线ax+by+c=0与圆x2+y2=4的位置关系是()A.相交但不过圆心B.相交且过圆心C.相切D.相离3.若过点A(4,0)的直线l与曲线(x-2)2+y2=1有公共点,则直线l的斜率的取值范围为()A.(-3,3)B.[-3,3]C.(-33,33)D.[-33,33]4.设圆(x-3)2+(y+5)2=r2(r0)上有且仅有两个点到直线4x-3y-2=0的距离等于1,则圆半径r的取值范围是()A.3r5B.4r6C.r4D.r5二、填空题5.(2016~2017·宜昌高一检测)过点P(12,1)的直线l与圆C:(x-1)2+y2=4交于A,B两点,C为圆心,当∠ACB最小时,直线l的方程为____.6.(2016~2017·福州高一检测)过点(-1,-2)的直线l被圆x2+y2-2x-2y+1=0截得的弦长为2,则直线l的斜率为____.C级能力拔高1.求满足下列条件的圆x2+y2=4的切线方程:(1)经过点P(3,1);(2)斜率为-1;(3)过点Q(3,0).2.设圆上的点A(2,3)关于直线x+2y=0的对称点仍在圆上,且与直线x-y+1=0相交的弦长为22,求圆的方程.第四章4.24.2.2A级基础巩固一、选择题1.已知圆C1:(x+1)2+(y-3)2=25,圆C2与圆C1关于点(2,1)对称,则圆C2的方程是()A.(x-3)2+(y-5)2=25B.(x-5)2+(y+1)2=25C.(x-1)2+(y-4)2=25D.(x-3)2+(y+2)2=252.圆x2+y2-2x-5=0和圆x2+y2+2x-4y-4=0的交点为A、B,则线段AB的垂直平分线方程为()A.x+y-1=0B.2x-y+1=0C.x-2y+1=0D.x-y+1=03.若圆(x-a)2+(y-b)2=b2+1始终平分圆(x+1)2+(y+1)2=4的周长,则a、b应满足的关系式是()A.a2-2a-2b-3=0B.a2+2a+2b+5=0C.a2+2b2+2a+2b+1=0D.3a2+2b2+2a+2b+1=04.(2016~2017·太原高一检测)已知半径为1的动圆与圆(x-5)2+(y+7)2=16相外切,则动圆圆心的轨迹方程是()A.(x-5)2+(y+7)2=25B.(x-5)2+(y+7)2=9C.(x-5)2+(y+7)2=15D.(x+5)2+(y-7)2=255.两圆x2+y2=16与(x-4)2+(y+3)2=r2(r0)在交点处的切线互相垂直,则r=A.5B.4C.3D.226.半径长为6的圆与y轴相切,且与圆(x-3)2+y2=1内切,则此圆的方程为()A.(x-6)2+(y-4)2=6B.(x-6)2+(y±4)2=6C.(x-6)2+(y-4)2=36D.(x-6)2+(y±4)2=36二、填空题7.圆x2+y2+6x-7=0和圆x2+y2+6y-27=0的位置关系是____.8.若圆x2+y2=4与圆x2+y2+2ay-6=0(a>0)的公共弦长为23,则a=____.三、解答题9.求以圆C1:x2+y2-12x-2y-13=0和圆C2:x2+y2+12x+16y-25=0的公共弦为直径的圆C的方程.10.判断下列两圆的位置关系.(1)C1:x2+y2-2x-3=0,C2:x2+y2-4x+2y+3=0;(2)C1:x2+y2-2y=0,C2:x2+y2-23x-6=0;(3)C1:x2+y2-4x-6y+9=0,C2:x2+y2+12x+6y-19=0;(4)C1:x2+y2+2x-2y-2=0,C2:x2+y2-4x-6y-3=0.B级素养提升一、选择题1.已知M是圆C:(x-1)2+y2=1上的点,N是圆C′:(x-4)2+(y-4
本文标题:圆的标准方程-练习题
链接地址:https://www.777doc.com/doc-1281746 .html