您好,欢迎访问三七文档
第3节圆的方程考试要求1.回顾确定圆的几何要素,在平面直角坐标系中,探索并掌握圆的标准方程与一般方程.2.能根据圆的方程解决一些简单的数学问题与实际问题.1.圆的定义和圆的方程定义圆是平面上到定点的距离等于定长的点的集合方程标准(x-a)2+(y-b)2=r2(r>0)圆心C(a,b)半径为r一般x2+y2+Dx+Ey+F=0(D2+E2-4F>0)充要条件:D2+E2-4F>0圆心坐标:-D2,-E2半径r=12D2+E2-4F2.点与圆的位置关系平面上的一点M(x0,y0)与圆C:(x-a)2+(y-b)2=r2之间存在着下列关系:(1)|MC|>r⇔M在圆外,即(x0-a)2+(y0-b)2>r2⇔M在圆外;(2)|MC|=r⇔M在圆上,即(x0-a)2+(y0-b)2=r2⇔M在圆上;(3)|MC|<r⇔M在圆内,即(x0-a)2+(y0-b)2<r2⇔M在圆内.1.圆心在坐标原点,半径为r的圆的方程为x2+y2=r2.2.以A(x1,y1),B(x2,y2)为直径端点的圆的方程为(x-x1)·(x-x2)+(y-y1)(y-y2)=0.1.思考辨析(在括号内打“√”或“×”)(1)确定圆的几何要素是圆心与半径.()(2)方程x2+y2=a2表示半径为a的圆.()(3)方程x2+y2+4mx-2y+5m=0表示圆.()(4)方程Ax2+Bxy+Cy2+Dx+Ey+F=0表示圆的充要条件是A=C≠0,B=0,D2+E2-4AF0.()答案(1)√(2)×(3)×(4)√解析(2)当a=0时,x2+y2=a2表示点(0,0);当a<0时,表示半径为|a|的圆.(3)当(4m)2+(-2)2-4×5m>0,即m<14或m>1时表示圆.2.(易错题)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是()A.a<-2B.-23<a<0C.-2<a<0D.-2<a<23答案D解析由方程表示圆的条件得a2+(2a)2-4(2a2+a-1)>0,即3a2+4a-4<0,∴-2<a<23.3.过点A(1,-1),B(-1,1),且圆心在直线x+y-2=0上的圆的方程是()A.(x-3)2+(y+1)2=4B.(x+3)2+(y-1)2=4C.(x-1)2+(y-1)2=4D.(x+1)2+(y+1)2=4答案C解析设圆心C的坐标为(a,b),半径为r.因为圆心C在直线x+y-2=0上,所以b=2-a.又|CA|2=|CB|2,所以(a-1)2+(2-a+1)2=(a+1)2+(2-a-1)2,所以a=1,b=1.所以r=2.所以方程为(x-1)2+(y-1)2=4.4.(多选)已知圆M的一般方程为x2+y2-8x+6y=0,则下列说法正确的有()A.圆M的圆心坐标为(4,-3)B.圆M被x轴截得的弦长为8C.圆M的半径为25D.圆M被y轴截得的弦长为6答案ABD解析圆M的一般方程为x2+y2-8x+6y=0,则(x-4)2+(y+3)2=25,圆的圆心坐标为(4,-3),半径为5,显然C不正确,ABD均正确.5.(2020·北京卷)已知半径为1的圆经过点(3,4),则其圆心到原点的距离的最小值为()A.4B.5C.6D.7答案A解析由平面几何知识知,当且仅当原点、圆心、点(3,4)共线时,圆心到原点的距离最小且最小值为dmin=(3-0)2+(4-0)2-1=4.6.(2020·全国Ⅱ卷)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线2x-y-3=0的距离为()A.55B.255C.355D.455答案B解析由题意可知圆心在第一象限,设圆心坐标为(a,b)(a0,b0).∵圆与两坐标轴均相切,∴a=b,且半径r=a,∴圆的标准方程为(x-a)2+(y-a)2=a2.∵点(2,1)在圆上,∴(2-a)2+(1-a)2=a2,∴a2-6a+5=0,解得a=1或a=5.当a=1时,圆心坐标为(1,1),此时圆心到直线2x-y-3=0的距离d=|2×1-1-3|22+(-1)2=255;当a=5时,圆心坐标为(5,5),此时圆心到直线2x-y-3=0的距离d=|2×5-5-3|22+(-1)2=255.综上,圆心到直线2x-y-3=0的距离为255.考点一圆的方程例1(1)(多选)(2021·济南质检)已知圆C被x轴分成两部分的弧长之比为1∶2,且被y轴截得的弦长为4,当圆心C到直线x+5y=0的距离最小时,圆C的方程为()A.(x+4)2+(y-5)2=20B.(x-4)2+(y+5)2=20C.(x+4)2+(y+5)2=20D.(x-4)2+(y-5)2=20答案AB解析设圆心为C(a,b),半径为r,圆C被x轴分成两部分的弧长之比为1∶2,则其中劣弧所对圆心角为120°,由圆的性质可得r=2|b|,又圆被y轴截得的弦长为4,∴a2+4=r2,∴a2+4=4b2,变形为b2-a24=1,即C(a,b)在双曲线y2-x24=1上,易知双曲线y2-x24=1上与直线x+5y=0平行的切线的切点为(a,b),此点到直线x+5y=0的距离最小.设切线方程为x+5y=m,由x+5y=m,y2-x24=1,消去y得x2+8mx-(4m2-20)=0,∴Δ=64m2+4(4m2-20)=0,解得m=±1,m=1时,x=-4,y=5,m=-1时,x=4,y=-5,即切点为(-4,5)或(4,-5),半径为r=25,∴圆的方程为(x+4)2+(y-5)2=20或(x-4)2+(y+5)2=20.(2)(2022·武汉调研)圆(x+2)2+(y-12)2=4关于直线x-y+8=0对称的圆的方程为________.答案(x-4)2+(y-6)2=4解析设对称圆的圆心为(m,n),则n-12m+2=-1,m-22-n+122+8=0,解得m=4,n=6,所以所求圆的圆心为(4,6),故所求圆的方程为(x-4)2+(y-6)2=4.感悟提升求圆的方程时,应根据条件选用合适的圆的方程.一般来说,求圆的方程有两种方法:(1)几何法,通过研究圆的性质进而求出圆的基本量.确定圆的方程时,常用到的圆的三个性质:①圆心在过切点且垂直切线的直线上;②圆心在任一弦的中垂线上;③两圆内切或外切时,切点与两圆圆心三点共线;(2)代数法,即设出圆的方程,用待定系数法求解.训练1(1)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________.答案x2+y2-2x=0解析法一设圆的方程为x2+y2+Dx+Ey+F=0(D2+E2-4F0),则F=0,1+1+D+E+F=0,4+2D+F=0,解得D=-2,E=0,F=0,故圆的方程为x2+y2-2x=0.法二设O(0,0),A(1,1),B(2,0),则kOA=1,kAB=-1,所以kOA·kAB=-1,即OA⊥AB,所以△OAB是以角A为直角的直角三角形,则线段BO是所求圆的直径,则圆心为C(1,0),半径r=12|OB|=1,圆的方程为(x-1)2+y2=1,即x2+y2-2x=0.(2)已知圆C的圆心在直线x+y=0上,圆C与直线x-y=0相切,且截直线x-y-3=0所得的弦长为6,则圆C的方程为________.答案(x-1)2+(y+1)2=2解析法一∵所求圆的圆心在直线x+y=0上,∴可设所求圆的圆心为(a,-a).∵所求圆与直线x-y=0相切,∴半径r=2|a|2=2|a|.又所求圆截直线x-y-3=0所得的弦长为6,圆心(a,-a)到直线x-y-3=0的距离d=|2a-3|2,∴d2+622=r2,即(2a-3)22+32=2a2,解得a=1,∴圆C的方程为(x-1)2+(y+1)2=2.法二设所求圆的方程为(x-a)2+(y-b)2=r2(r0),则圆心(a,b)到直线x-y-3=0的距离d=|a-b-3|2,∴r2=(a-b-3)22+32,即2r2=(a-b-3)2+3.①∵所求圆与直线x-y=0相切,∴|a-b|12+(-1)2=r.②又∵圆心在直线x+y=0上,∴a+b=0.③联立①②③,解得a=1,b=-1,r=2,故圆C的方程为(x-1)2+(y+1)2=2.考点二与圆有关的最值问题角度1利用几何意义求最值例2已知点(x,y)在圆(x-2)2+(y+3)2=1上.(1)求yx的最大值和最小值;(2)求x+y的最大值和最小值;(3)求x2+y2+2x-4y+5的最大值和最小值.解(1)yx可视为点(x,y)与原点连线的斜率,yx的最大值和最小值就是与该圆有公共点的过原点的直线斜率的最大值和最小值,即直线与圆相切时的斜率.设过原点的直线的方程为y=kx,由直线与圆相切得圆心到直线的距离等于半径,即|2k+3|k2+1=1,解得k=-2+233或k=-2-233,∴yx的最大值为-2+233,最小值为-2-233.(2)设t=x+y,则y=-x+t,t可视为直线y=-x+t在y轴上的截距,∴x+y的最大值和最小值就是直线与圆有公共点时直线纵截距的最大值和最小值,即直线与圆相切时在y轴上的截距.由直线与圆相切得圆心到直线的距离等于半径,即|2+(-3)-t|2=1,解得t=2-1或t=-2-1.∴x+y的最大值为2-1,最小值为-2-1.(3)x2+y2+2x-4y+5=(x+1)2+(y-2)2,求它的最值可视为求点(x,y)到定点(-1,2)的距离的最值,可转化为求圆心(2,-3)到定点(-1,2)的距离与半径的和或差.又圆心到定点(-1,2)的距离为34,∴x2+y2+2x-4y+5的最大值为34+1,最小值为34-1.角度2利用对称性求最值例3已知A(0,2),点P在直线x+y+2=0上,点Q在圆C:x2+y2-4x-2y=0上,则|PA|+|PQ|的最小值是________.答案25解析因为圆C:x2+y2-4x-2y=0,所以圆C是以C(2,1)为圆心,半径r=5的圆.设点A(0,2)关于直线x+y+2=0的对称点为A′(m,n),所以m+02+n+22+2=0,n-2m-0=1,解得m=-4,n=-2,故A′(-4,-2).连接A′C交圆C于Q(图略),此时,|PA|+|PQ|取得最小值,由对称性可知|PA|+|PQ|=|A′P|+|PQ|=|A′Q|=|A′C|-r=25.角度3建立函数关系求最值例4(2022·厦门模拟)设点P(x,y)是圆:x2+(y-3)2=1上的动点,定点A(2,0),B(-2,0),则PA→·PB→的最大值为________.答案12解析由题意,知PA→=(2-x,-y),PB→=(-2-x,-y),所以PA→·PB→=x2+y2-4,由于点P(x,y)是圆上的点,故其坐标满足方程x2+(y-3)2=1,故x2=-(y-3)2+1,所以PA→·PB→=-(y-3)2+1+y2-4=6y-12.由圆的方程x2+(y-3)2=1,易知2≤y≤4,所以,当y=4时,PA→·PB→的值最大,最大值为6×4-12=12.感悟提升与圆有关的最值问题的常见类型及解题策略(1)与圆有关的长度或距离的最值问题的解法.一般根据长度或距离的几何意义,利用圆的几何性质数形结合求解.(2)与圆上点(x,y)有关代数式的最值的常见类型及解法.①形如u=y-bx-a型的最值问题,可转化为过点(a,b)和点(x,y)的直线的斜率的最值问题;②形如(x-a)2+(y-b)2型的最值问题,可转化为圆上动点到定点(a,b)的距离的平方的最值问题.训练2(1)已知实数x,y满足方程x2+y2-4x+1=0,则x2+y2的最大值为________,最小值为________.答案7+437-43解析x2+y2表示圆(x-2)2+y2=3上的一点与原点距离的平方,由平面几何知识知,在原点和圆心连线与圆的两个交点处取得最大值和最小值(如图).又圆心到原点的距离为2,所以x2+y2的最大值是(2+3)2=7+43,x2+y2的最小值是(
本文标题:第3节 圆的方程
链接地址:https://www.777doc.com/doc-12818475 .html