您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 素养拓展23 数列中的数学文化(原卷版)
【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展23数列与数学文化(精讲+精练)新课程标准进一步明确了数学文化在教学中的地位,数学文化作为素养考查的四大内涵之一,以数学文化为背景的试题将是新高考的考察内容,数列与数学文化有着紧密的联系,本专辑总结了数学文化在数列中出现的真题和模拟题。【典例1】(2022·全国·统考高考真题)图1是中国古代建筑中的举架结构,,,,AABBCCDD是桁,相邻桁的水平距离称为步,垂直距离称为举,图2是某古代建筑屋顶截面的示意图.其中1111,,,DDCCBBAA是举,1111,,,ODDCCBBA是相等的步,相邻桁的举步之比分别为11111231111,0.5,,DDCCBBAAkkkODDCCBBA.已知123,,kkk成公差为0.1的等差数列,且直线OA的斜率为0.725,则3k()A.0.75B.0.8C.0.85D.0.9【典例2】(2022·全国·统考高考真题)嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列nb:1111b,212111b,31231111b,…,依此类推,其中(1,2,)kkN.则()二、题型精讲精练一、知识点梳理A.15bbB.38bbC.62bbD.47bb【题型训练-刷模拟】一、单选题1.(2023·辽宁鞍山·统考模拟预测)“埃拉托塞尼筛法”是保证能够挑选全部素数的一种古老的方法.这种方法是依次写出2和2以上的自然数,留下第一个数2不动,剔除掉所有2的倍数;接着,在剩余的数中2后面的一个数3不动,剔除掉所有3的倍数;接下来,再在剩余的数中对3后面的一个数5作同样处理;……,依次进行同样的剔除.剔除到最后,剩下的便全是素数.在利用“埃拉托塞尼筛法”挑选2到20的全部素数过程中剔除的所有数的和为()A.130B.132C.134D.1412.(2023·广东深圳·校考二模)宋代制酒业很发达,为了存储方便,酒缸是要一层一层堆起来的,形成堆垛,用简便的方法算出堆垛中酒缸的总数,古代称之为堆垛术.有这么一道关于“堆垛”求和的问题:将半径相等的圆球堆成一个三角垛,底层是每边为n个圆球的三角形,向上逐层每边减少一个圆球,顶层为一个圆球,记自上而下第n层的圆球总数为na,容易发现:11a,23a,36a,则105aa()A.45B.40C.35D.303.(2023·湖南郴州·校联考模拟预测)2022年卡塔尔世界杯是第二十二届世界杯足球赛,是历史上首次在卡塔尔和中东国家境内举行,也是继2002年韩日世界杯之后时隔二十年第二次在亚洲举行的世界杯足球赛.某网站全程转播了该次世界杯,为纪念本次世界杯,该网站举办了一针对本网站会员的奖品派发活动,派发规则如下:①对于会员编号能被2整除余1且被7整除余1的可以获得精品足球一个;②对于不符合①中条件的可以获得普通足球一个.已知该网站的会员共有1456人(编号为1号到1456号,中间没有空缺),则获得精品足球的人数为()A.102B.103C.104D.1054.(2023·全国·模拟预测)离子是指原子由于自身或外界的作用而失去或得到一个或几个电子后达到的稳定结构,得到电子为阴离子,失去电子为阳离子,在外界作用下阴离子与阳离子之间可以相互转化.科学家们在试验过程中发现,在特定外界作用下,1个阴离子可以转化为1个阳离子和1个阴离子,1个阳离子可以转化为1个阴离子,如果再次施加同样的外界作用,又能产生同样的转化.若一开始有1个阴离子和1个阳离子,则在9次该作用下,阴离子的个数为()A.87B.89C.91D.935.(2023·四川·校联考模拟预测)“勾股树”,也被称为毕达哥拉斯树,是根据勾股定理所画出来的一个可以无限重复的树形图形.如图所示,以正方形ABCD的一边为直角三角形的斜边向外作一个等腰直角三角形,再以等腰直角三角形的两直角边为正方形的边长向外作两个正方形,如此继续,若共得到127个正方形,且16AB,则这127个正方形中,最小的正方形边长为()A.1B.2C.2D.226.(2023·河北·统考模拟预测)数学家杨辉在其专著《详解九章算术法》和《算法通变本末》中,提出了一些新的高阶等差数列.其中二阶等差数列是一个常见的高阶等差数列、如数列2,4,7,11,16,从第二项起,每一项与前一项的差组成新数列2,3,4,5,新数列2,3,4,5为等差数列,则称数列2,4,7,11,16为二阶等差数列,现有二阶等差数列na,其前七项分别为2,2,3,5,8,12,17.则该数列的第20项为()A.173B.171C.155D.1517.(2023·湖北襄阳·襄阳四中校考三模)为响应国家号召,某地出台了相关的优惠政策鼓励“个体经济”.个体户小王2022年6月初向银行借了1年期的免息贷款8000元,用于进货,因质优价廉,供不应求.据测算:他每月月底获得的利润是该月初投入资金的20%,并且每月月底需扣除生活费800元,余款作为资金全部用于下月再进货,如此继续,预计到2023年5月底他的年所得收入(扣除当月生活费且还完贷款)为()元(参考数据:111.27.5,121.29)A.35200B.43200C.30000D.320008.(2023·河南·洛宁县第一高级中学校联考模拟预测)欧拉是18世纪最优秀的数学家之一,几乎每个数学领域都可以看到欧拉的名字,例如初等几何中的欧拉线、多面体中的欧拉定理、微分方程中的欧拉方程,以及数论中的欧拉函数等等.个数叫互质数)的正整数(包括1)的个数,记作n.例如:小于或等于4的正整数中与4互质的正整数有1,3这两个,即42.记nS为数列6n的前n项和,则12S()A.12122325B.122615C.121312D.1213129.(2023·浙江温州·乐清市知临中学校考二模)“杨辉三角”是中国古代重要的数学成就,如图是由“杨辉三角”拓展而成的三角形数阵,记na为图中虚线上的数1,3,6,10,构成的数列na的第n项,则50a的值为()A.1275B.1276C.1270D.128010.(2023·河南郑州·统考模拟预测)北宋大科学家沈括在《梦溪笔谈》中首创的“隙积术”,就是关于高阶等差数列求和的问题.现有一货物堆,从上向下查,第一层有1个货物,第二层比第一层多2个,第三层比第二层多3个,以此类推,记第n层货物的个数为na,则数列221nna的前2023项和为()A.21212024B.21212023C.21412023D.2141202411.(2023·湖南长沙·长沙一中校考模拟预测)等比数列的历史由来已久,我国古代数学文献《孙子算经》、《九章算术》、《算法统宗》中都有相关问题的记载.现在我们不仅可以通过代数计算来研究等比数列,还可以构造出等比数列的图象,从图形的角度更为直观的认识它.以前n项和为nS,且10a,01q的等比数列na为例,先画出直线OQ:yqx,并确定x轴上一点11,0Aa,过点1A作y轴的平行线,交直线OQ于点1P,则111APaq.再过点1P作平行于x轴,长度等于1aq的线段12PM,……,不断重复上述步骤,可以得到点列nP,nM和nA.下列说法错误的是()A.2231AAaqB.||||nnnPAqOAC.点nA的坐标为,0nSD.1||nnnPASa12.(2023·湖北黄冈·浠水县第一中学校考三模)刻漏是中国古代用来计时的仪器,利用附有刻度的浮箭随着受水壶的水面上升来指示时间.为了使受水壶得到均匀水流,古代的科学家们发明了一种三级漏壶,壶形都为正四棱台,自上而下,三个漏壶的上口宽依次递减1寸(约3.3厘米),下底宽和深度也依次递减1寸.设三个漏壶的侧面与底面所成锐二面角依次为1,2,3,则()A.1322B.132sinsin2sinC.132coscos2cosD.132tantan2tan13.(2023·安徽亳州·安徽省亳州市第一中学校考模拟预测)元代数学家朱世杰所创立的“招差术”是我国古代数学领域的一项重要成就,曾被科学家牛顿加以利用,在世界上产生了深远的影响.已知利用“招差术”得到以下公式:11(1)(1)(2)3nkkknnn,具体原理如下:111121121133kkkkkkkkkkkk,11(1)[123(234123)(1)(2)(1)(1)]3nkkknnnnnn1123nnn,类比上述方法,51(1)(2)kkkk的值是()A.90B.210C.420D.75614.(2023·河南郑州·统考模拟预测)北宋大科学家沈括在《梦溪笔谈》中首创的“隙积术”,就是关于高阶等差数列求和的问题.现有一货物堆,从上向下查,第一层有1个货物,第二层比第一层多2个,第三层比第二层多3个,以此类推,记第n层货物的个数为na,则使得22nan成立的n的最小值是()A.3B.4C.5D.615.(2023·黑龙江大庆·统考二模)我国古代数学家对π近似值的确定做出了巨大贡献,早在东汉初年的数学古籍《周髀算经》里便记载“径一周三”,并称之为“古率”,即“直径为1的圆,周长为3”,之后三国时期数学家刘徽证明了圆内接正六边形的周长是圆直径的三倍,说明“径一周三”实际上是圆的内接正六边形的周长与圆直径的比值,而不是圆周率.若将圆内接正n边形的周长与其外接圆的直径之比记为3nan,则下列说法错误的是()A.422aB.1nnaaC.存在*tN,当nt时,23naD.存在*0nN,使得3123nnaa二、填空题16.(2023·湖南长沙·长沙市明德中学校考三模)中国古代数学著作《增减算法统宗》中有这样一段记载:“三百七十八里关,初行健步不为难,次日脚痛减一半,如此六日过其关.”则此人在第六天行走的路程是里(用数字作答).17.(2023·甘肃金昌·永昌县第一高级中学统考模拟预测)我国古代数学著作《九章算术》有如下问题,“今有金箠,长五尺.斩本一尺,重四斤.斩末一尺,重二斤.问次一尺各重几何?”意思是“现有一根金杖,长五尺,一头粗,一头细.在粗的一端截下1尺,重4斤;在细的一端截下1尺,重2斤;问依次每一尺各重多少斤?”根据上题的已知条件,若金杖由粗到细是均匀变化的,估计此金杖总重量约为斤.18.(2023·云南·云南师大附中校考模拟预测)幻方又称为魔方,方阵或厅平方,最早记载于中国公元前500年的春秋时期《大戴礼》中,宋代数学家杨辉称之为纵横图.如图所示,将1,2,3,…,9填入33的方格内,使三行、三列、两对角线的三个数之和都等于15,便得到一个3阶幻方;一般地,将连续的正整数1,2,3,…,2n填入nn的方格内,使得每行、每列、每条对角线上的数字的和相等,这个正方形就叫做n阶幻方.记n阶幻方的一条对角线上的数字之和为nS(如:315S),则10S.49235781619.(2023·广西南宁·南宁三中校考一模)唐代酒宴上的助兴游戏“击鼓传花”,也称传彩球.游戏规则为:鼓响时,众人开始依次传花,至鼓停为止,此时花在谁手中,谁就上台表演节目.甲、乙、丙三人玩击鼓传花,鼓响时,第1次由甲将花传出,每次传花时,传花者都等可能地将花传给另外两人中的任何一人,经过6次传递后,花又在甲手中的概率为.20.(2023·全国·模拟预测)斐波那契数列由意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,1
本文标题:素养拓展23 数列中的数学文化(原卷版)
链接地址:https://www.777doc.com/doc-12824549 .html