您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 关于停车场数学建模问题
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。我们参赛选择的题号是(从A/B/C中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学院(请填写完整的全名):参赛队员(打印并签名):1.2.3.日期:2013年11月2日评阅编号(教师评阅时填写):1汽车车库库存的优化方案摘要本文研究的是关于汽车车库库存的问题,通过分析汽车参数以及车库数据,对车库进行合理的规划,建立了倾斜泊车模型、单向排列模型、交叉排列模型,利用AutoCAD对以上模型进行逐一的分析,分别回答了题目所给的所有问题。针对问题一,首先分析了传统平行泊车的弊端,平行泊车难度较大,需要司机较高的驾驶技术,因此,我们建立了倾斜泊车模型。查阅了相关汽车的资料并根据汽车的参数了解汽车的最小转弯半径。其次通过对车库空间利用率以及道路通畅度的综合考虑,我们认为当停车位与通道成一定夹角时效果最佳,并利用最小的转弯半径求得极限角度。最后根据实际环境中的不确定因素,我们将停车位大小适当进行增加,大大提高了安全性。针对问题二,首先,根据题目中所给条件,即可以把车子先行调出,然后再调动内部的车,使内部车辆可以驶出。为了进一步提高车库的利用率,我们决定设计一个去掉通车道,只保留消防车道的方案。其次,我们根据停车位不同的排列方式设计了两种不同的模式,即单向排列模型及交叉排列模型。分别得出这两种模型的函数关系式,再通过小轿车和商务车两种车位所占面积,小轿车和商务车驶入停车位最佳角度等情况,分别计算出两种模型各能停多少辆小轿车和商务车在车库中。最后,我们对这两种模型进行了比较,最终选择交叉排列模型为最佳模型。针对问题三,我们通过问题二的模型进行了分析,由于条件三的改变,使得模型得到简化。由于车子的前轮可以90度转动,即小车的转弯半径可以忽略不计。再结合消防通道的设计,明确了车从车库开出的具体方向,设计了最优化的调运方案,使得调运方案费时最短。最后就对本文模型建立的不足之处进行剖析,并阐明了实际建设的停车场与理论设计的停车场的不同之处,需要具体问题具体分析。关键词:倾斜泊车模型交叉排列模型车库利用率安全性2一问题的立意与背景1.1背景资料:由于生活质量和收入水平的不断提高,越来越多的城市居民有金钱基础和购车欲望。在最近几年我国城市机动车的增长速度平均在15%左右,一个新的私家车消费高潮很快就要到来。随着人们对汽车的需求量的增加,汽车制造商们也加快了汽车制造的步伐。而与此同时一个城市对汽车的需求量较大,故而需要一次性输送一大批汽车。但是这所有的汽车不能在同一时间全部制造完成,汽车制造厂的车库库存问题由此产生,如何解决好车库库存问题,使车库利用率最大化,对于工厂来说有着重要的现实意义。1.2需要解决的问题:如何利用已知的车库大小来停放最多的车辆,即在满足一定要求并符合国家安全条例的条件下,尽可能的提高仓库的利用率。1.在保证满足安全,道路通畅的条件下,通过车型的有关数据,建立模型,选择最佳的车位形状。提高仓库利用率。2.在满足车辆无法调出时,可以先将阻碍的车辆开出车库外的情况下,建立模型,使得车库利用率达到最大化。3.在问题2的解决情况下,假定汽车前轮可以左右转动90度,且车速相同。建立模型,使车库四个角落的汽车全部开出所需时间最小的方案。二问题的解决思路根据这个问题的实际背景和现有的汽车参数数据,首先依据所查文献中的汽车的相关技术参数及车库的安全参数对车库的车位形状选择的确定做定量的分析与综合求解;然后依据求解的车位形状,综合所有因素,解出最后的终极方案。问题1)首先通过查阅相关资料了解到汽车的主要运动原理,从而就转弯半径和轮距,汽车长度的概念及数据,结合所求解得到的相关公式,根据理论分析和实际需求对车库的车位形状进行选择。然后由于是两种车型,故而需要通过分区域来停放。最后联系安全隐患问题最终确定车库的库存设计方案。问题2)在不用考虑每辆汽车都能单独调出的情况下,可以将所有的除消防车道以外的通车道撤去,增大车库利用率,最后联系安全隐患问题最终确定车库的库存设计方案。问题3)利用问题二中建立的模型,再根据条件中给出的车辆前轮可以转动90度,结合消防通道的设计,明确四个角落的车辆开出的方向。确定最优化的调运方案。三基本假设1)假设每种汽车的大小结构都是相同的,不同种汽车的大小不同,结构相同。32)假设车子的车宽车长都是固定不变的。3)假设存放车辆的司机的驾驶能力都是一样的,属于中等水平。4)假设每辆车都能按规定停车,不超出车位线。5)假设汽车制造厂制造的大小车型的数量是一样的。四符号系统1C------汽车最小转弯半径2C------汽车转弯时转向中心到内侧转向车轮轨迹------停车位的长边与通道的夹角R------通车道的最小宽度H------停车位的纵向宽度I------小轿车的长度W------停车位宽度W------小轿车车位宽度W------商务车车位宽度0L------停车位末端与消防车道之间的距离L------停车位长度1L------小三角形顶点到虚线的距离2L------上下两个停车位的斜向距离L------商务车车位长度x------除去消防车道后仓库的长度y------除去消防车道后仓库的宽度L------小轿车车位长度m------最顶端可以停放车辆的最大值N------一列停车位的最大个数M------多余空间总车位数量0S------最终空余的面积1S------多余空间的面积五模型的建立与求解5.1车库车辆泊位规划模型(有通车道)5.1.1单辆车停车位最佳角度由于考虑到问题一中所有汽车都需要畅通无阻的开出车库,所以汽车从通道进入车位一般得转弯,在这里就应该考虑到汽车的最小转弯半径。汽车转弯半径(RADIUSOFTURNINGCIRCLE)就是指当方向盘转到极限位置时,外侧前轮轨迹圆半径.转弯半径在很大程度上代表了汽车能够通过狭窄弯曲地带或绕开不可越过障碍物的能力。我们查阅相关资料发现不同大小的车型的最小转弯半径和长宽并不相等,数据如下:4车子的具体参数(单位:mm)车型长/宽最小转弯半径小轿车4833/18105700商务车4930/18956300可设车子的最小转弯半径为C1,那么汽车转弯时转向中心到汽车内侧转向车轮轨迹为012HCC,如下图所示:车辆转弯模拟图对于通畅考虑需要有一条边是靠近通道的,为了使得该车位的小轿车自由进出。要求出单辆车停车位最佳角度,我们设该矩形停车位的长边与通道的夹角为。为了留出通道空间及使得车库利用率最大化。所以,我们需要假设该通道的所有车位都保持着与该车位相同的角度和距离平行排列,如下图所示:车辆行驶路径图5车辆沿着箭头方向行驶转弯角度驶入车位。具体小轿车的行驶入车位的情形如下图所示:车辆驶入图R为通车道的最小宽度。小轿车从通车道以Φ角度进入停车位,所以通道的最小宽度COSCCR21。在保证车辆能够自由进出的前提下,本着要求通道宽度尽量小的原则,每辆车均以角度停放,用H表示小轿车的宽度,用I表示车辆长度,考虑到消防安全问题,所以根据汽车库设计防火规范(GBJ67-84)中的下表所示:汽车与汽车之间以及汽车与墙、柱之间的间距注:当墙、柱外有暖气片等突出物时,汽车与墙、柱的间距应从其凸出部分外缘算起。6所以停车位的宽度应比车辆的宽度要宽,用1H表示停车位的纵向宽度5.001HH,用W表示停车位宽度,用L表示停车位长度,图中上虚线分割停车位的小三角区域可以提供给上面或下面的停车位使用,L0表示停车位末端与消防车道之间的距离,L1表示小三角形顶点到虚线的距离。如下图所示:所以可得关于的函数,且有:sin1HWcos2111HL1sinLILcos)cot21(10HIL现在按照上图所示,计算每辆车占据的停车位面积S()。假设该排车位是无限长的,可以忽略该排车位两端停车位浪费掉的面积LL021,因为它们被平均到每个车位上去的公摊面积很小,可以不计。从车辆所占的停车位来看,它占据的面积是LW,另外,它所占的通道面积为RH。因为一个通车道可以由两排车位使用,所以我们得到7sin2cossin2sin2cos21)(2111211CHCHHIHWRWLS我们先求小轿车占用的停车位的最小面积,将mC700.51、mC890.3810.1700.52、mH310.2500.0810.11、mI833.4代入)(S,可得sincos825.1sin584.6164.11)(S求导可得2sincos584.6-825.1)(S所以当277.0584.6825.1cos即905.73)2772.0arccos(时,)(S达到最小,249.17min)(mS分析表明,当停车位与通车道夹角905.73时可以使每辆小轿车占据停车位的面积达到最小。同理可得,当停车位与通车道夹角为389.71时可以使每辆商务车占据停车位的面积达到最小。5.1.2仅有一种车型的全局车位排列本着通道顺畅的原则,我们所设计的通车道是单向的,由上得出与单向通道的夹角为,可使单位车辆占据的面积最小,此时宽度为R的单向通道可提供给两边的停车位使用,通车道两边的停车位角度应该相对,如图1所示:图18显而易见,停车排数LP最多只能是通道数RP的两倍,即:RLPP2,当按照一排停车位,一条通道,一排停车位这样三排一组的形式加以组合,依次排列,此时RLPP2。所以,车库的形状应如图2所示:图25.2车库车辆泊位规划模型(无通车道)5.2.1车库设计模型在车辆无法调出时,可以先将阻碍的车辆开出车库外,在这种情况下,我们将空间的利用率进一步提升,即将除消防车道以外的所有通车道省去。如下图所示:图3亦或是如图4所示:9图45.2.1车库设计优化模型比较考虑到使车库的利用率最大化,所以在这里我们需要比较图3和图4两种车库的车位规划模型,选择出最优化的方案。先讨论图3的模型,即单向排列模型。用x表示除去消防车道后仓库的宽度,用y表示除去消防车道后仓库的长度。可以看出,当x比较大的时候,停车位末端会与消防通道末端相隔较大的距离,这较大的距离所产生的空间,我们称为多余空间。在这多余空间里,我们还可以设计放一些停车位使得车库利用率最大化。如下图所示:用2L表示上下两个停车位的斜向距离,用N表示一列停车位的最大个数,且N为正整数,用m表示最顶端可以停放车辆的最大值,m表示模型一中最顶端可以停放车辆的最大值减去m,用),...,2,1(mini表示多余空间中,从下端开始,每增加一列停车位,就经过i行的停车位数量。用M表示多余空间总车位数量。可以列出以下式子:sin22LL2sin2NLy12cos21WLn22cos22WLn...mWLnm2cos2Nnm10)...(21mnnnNmM用0S表示最终空余的面积,用1S表示多余空间的面积,得出以下式子:2cot21yS最终的空余面积0S的表达式:)(10SMSS再讨论图4的模型,即交叉排列模型:由图可知,因为每相邻两个停车位所朝方向相同,我们不妨将这朝向相同的两列车位设为一组,设其长为a,其中)sin(2La,再分别计算出横向及纵向可停车总数,设起分别为A,B,则ayA,WLxB)cos(2,但是要注意的是,剩余距离的不同可能会影响结果,下面分不
本文标题:关于停车场数学建模问题
链接地址:https://www.777doc.com/doc-1326074 .html