您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018学年人教版八年级数学上期末试卷
2018人教版八年级数学上期末试卷及详细解答一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是()A.B.C.D.2.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)3.已知三角形两边长分别为7、11,那么第三边的长可以是()A.2B.3C.4D.54.下列计算正确的是()A.(a3)2=a6B.a•a2=a2C.a3+a2=a6D.(3a)3=9a35.一个多边形每个外角都等于36°,则这个多边形是几边形()A.7B.8C.9D.106.如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°B.255°C.155°D.150°7.下列从左到右的运算是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy8.若等腰三角形的两边长分别为6和8,则周长为()A.20或22B.20C.22D.无法确定9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8B.16C.24D.32二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为__________微米.12.若一个三角形三个内角的度数之比为1:2:3,则这个三角形中的最大的角度是__________.13.计算(π﹣3.14)0+=__________.14.若x2+mx+4是完全平方式,则m=__________.15.如图,∠AOB=30°,OP平分∠AOB,PD⊥OB于D,PC∥OB交OA于C,若PC=6,则PD=__________.16.下面的图表是我国数学家发明的“杨辉三角”,此图揭示了(a+b)n(n为非负整数)的展开式的项数及各项系数的有关规律.请你观察,并根据此规律写出:(a﹣b)5=__________.三、解答题(本题共9小题,共102分,解答题要求写出文字说明,证明过程或计算步骤)17.计算:(1)(﹣a2)3•4a(2)2x(x+1)+(x+1)2.18.解下列分式方程:(1)=(2)+1=.19.(1)画出△ABC关于y轴对称的图形△A,B,C,;(2)在x轴上找出点P,使得点P到点A、点B的距离之和最短(保留作图痕迹)20.如图,点E、F在BC上,BE=FC,AB=DC,∠B=∠C.求证:∠A=∠D.21.小鹏的家距离学校1600米,一天小鹏从家去上学,出发10分钟后,爸爸发现他的数学课本忘了拿,立即带上课本去追他,在学校门口追上了他,已知爸爸的速度是小鹏速度的2倍,求小鹏的速度.22.如图,在△ABC中,AB=AC,∠A=36°,DE是AC的垂直平分线.(1)求证:△BCD是等腰三角形;(2)△BCD的周长是a,BC=b,求△ACD的周长(用含a,b的代数式表示)23.先化简代数式:+×,然后再从﹣2≤x≤2的范围内选取一个合适的整数代入求值.24.已知△ABC是等边三角形,点D是直线BC上一点,以AD为一边在AD的右侧作等边△ADE.(1)如图①,点D在线段BC上移动时,直接写出∠BAD和∠CAE的大小关系;(2)如图②,点D在线段BC的延长线上移动时,猜想∠DCE的大小是否发生变化.若不变请求出其大小;若变化,请说明理由.25.(14分)已知:点O到△ABC的两边AB,AC所在直线的距离相等,且OB=OC.(1)如图1,若点O在边BC上,求证:AB=AC;(2)如图2,若点O在△ABC的内部,求证:AB=AC;(3)若点O在△ABC的外部,AB=AC成立吗?请画出图表示.2015-2016八年级(上)期末数学试卷一、选择题(本大题共10小题,每小题2分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列图案属于轴对称图形的是()A.B.C.D.【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:根据轴对称图形的概念知A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.【点评】轴对称图形的判断方法:把某个图象沿某条直线折叠,如果图形的两部分能够重合,那么这个是轴对称图形.2.点M(1,2)关于y轴对称点的坐标为()A.(﹣1,2)B.(﹣1,﹣2)C.(1,﹣2)D.(2,﹣1)【考点】关于x轴、y轴对称的点的坐标.【专题】常规题型.【分析】根据关于y轴对称的点,纵坐标相同,横坐标互为相反数解答.【解答】解:点M(1,2)关于y轴对称点的坐标为(﹣1,2).故选A.【点评】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.3.已知三角形两边长分别为7、11,那么第三边的长可以是()A.2B.3C.4D.5【考点】三角形三边关系.【分析】根据三角形的三边关系可得11﹣7<第三边长<11+7,再解可得第三边的范围,然后可得答案.【解答】解:设第三边长为x,由题意得:11﹣7<x<11+7,解得:4<x<18,故选:D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.4.下列计算正确的是()A.(a3)2=a6B.a•a2=a2C.a3+a2=a6D.(3a)3=9a3【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】A、根据幂的乘方的定义解答;B、根据同底数幂的乘法解答;C、根据合并同类项法则解答;D、根据积的乘方的定义解答.【解答】解:A、(a3)2=a3×2=a6,故本选项正确;B、a•a2=a1+2=a3,故本选项错误;C、a3和a2不是同类项,不能合并,故本选项错误;D(3a)3=27a3,故本选项错误.故选A.【点评】本题考查了同底数幂的乘法,幂的乘方,积的乘方,理清指数的变化是解题的关键.5.一个多边形每个外角都等于36°,则这个多边形是几边形()A.7B.8C.9D.10【考点】多边形内角与外角.【专题】计算题.【分析】多边形的外角和是360°,又有多边形的每个外角都等于36°,所以可以求出多边形外角的个数,进而得到多边形的边数.【解答】解:这个多边形的边数是:=10.故答案是D.【点评】本题考查多边形的外角和,以及多边形外角的个数与其边数之间的相等关系.6.如图,已知△ABC中,∠A=75°,则∠1+∠2=()A.335°B.255°C.155°D.150°【考点】多边形内角与外角;三角形内角和定理.【分析】先由三角形内角和定理得出∠B+∠C=180°﹣∠A=105°,再根据四边形内角和定理即可求出∠1+∠2=360°﹣105°=255°.【解答】解:∵∠A+∠B+∠C=180°,∠A=75°,∴∠B+∠C=180°﹣∠A=105°.∵∠1+∠2+∠B+∠C=360°,∴∠1+∠2=360°﹣105°=255°.故选B.【点评】本题考查了三角形、四边形内角和定理,掌握n边形内角和为(n﹣2)•180°(n≥3且n为整数)是解题的关键.7.下列从左到右的运算是因式分解的是()A.2a2﹣2a+1=2a(a﹣1)+1B.(x﹣y)(x+y)=x2﹣y2C.9x2﹣6x+1=(3x﹣1)2D.x2+y2=(x﹣y)2+2xy【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【解答】解:没把一个多项式转化成几个整式积的形式,故A错误;B、是整式的乘法,故B错误;C、把一个多项式转化成几个整式积的形式,故C正确;D、没把一个多项式转化成几个整式积的形式,故D错误;故选:C.【点评】本题考查了因式分解,因式分解是把一个多项式转化成几个整式积的形式.8.若等腰三角形的两边长分别为6和8,则周长为()A.20或22B.20C.22D.无法确定【考点】等腰三角形的性质;三角形三边关系.【分析】分6是腰长与底边两种情况分情况讨论,再利用三角形的三边关系判断是否能组成三角形.【解答】解:若6是腰长,则三角形的三边分别为6、6、8,能组成三角形,周长=6+6+8=20,若6是底边长,则三角形的三边分别为6、8、8,能组成三角形,周长=6+8+8=22,综上所述,三角形的周长为20或22.故选A.【点评】本题考查了等腰三角形的性质,三角形的三边关系,难点在于分情况讨论.9.如图,已知∠1=∠2,则不一定能使△ABD≌△ACD的条件是()A.AB=ACB.BD=CDC.∠B=∠CD.∠BDA=∠CDA【考点】全等三角形的判定.【专题】压轴题.【分析】利用全等三角形判定定理ASA,SAS,AAS对各个选项逐一分析即可得出答案.【解答】解:A、∵∠1=∠2,AD为公共边,若AB=AC,则△ABD≌△ACD(SAS);故A不符合题意;B、∵∠1=∠2,AD为公共边,若BD=CD,不符合全等三角形判定定理,不能判定△ABD≌△ACD;故B符合题意;C、∵∠1=∠2,AD为公共边,若∠B=∠C,则△ABD≌△ACD(AAS);故C不符合题意;D、∵∠1=∠2,AD为公共边,若∠BDA=∠CDA,则△ABD≌△ACD(ASA);故D不符合题意.故选:B.【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.10.如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA1=2,则△A5B5A6的边长为()A.8B.16C.24D.32【考点】等边三角形的性质.【专题】规律型.【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2得出答案.【解答】解:如图所示:∵△A1B1A2是等边三角形,∴A1B1=A2B1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°﹣120°﹣30°=30°,又∵∠3=60°,∴∠5=180°﹣60°﹣30°=90°,∵∠MON=∠1=30°,∴OA1=A1B1=1,∴A2B1=1,∵△A2B2A3、△A3B3A4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A1B1∥A2B2∥A3B3,B1A2∥B2A3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A2B2=2B1A2,B3A3=2B2A3,∴A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=16B1A2=16;故选:B.【点评】本题考查的是等边三角形的性质以及等腰三角形的性质,根据已知得出规律A3B3=4B1A2,A4B4=8B1A2,A5B5=16B1A2是解题关键.二、填空题(本题共18分,每小题3分,共18分)11.科学家发现一种病毒的直径为0.0043微米,则用科学记数法表示为4.3×10﹣3微米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.0043=4.3×10﹣3.故答案为4.3×10﹣3.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,
本文标题:2018学年人教版八年级数学上期末试卷
链接地址:https://www.777doc.com/doc-1330625 .html