您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 完美版圆锥曲线知识点总结
圆锥曲线的方程与性质1.椭圆(1)椭圆概念平面内与两个定点1F、2F的距离的和等于常数2a(大于21||FF)的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离2c叫椭圆的焦距。若M为椭圆上任意一点,则有21||||2MFMFa。椭圆的标准方程为:22221xyab(0ab)(焦点在x轴上)或12222bxay(0ab)(焦点在y轴上)。注:①以上方程中,ab的大小0ab,其中222bac;②在22221xyab和22221yxab两个方程中都有0ab的条件,要分清焦点的位置,只要看2x和2y的分母的大小。例如椭圆221xymn(0m,0n,mn)当mn时表示焦点在x轴上的椭圆;当mn时表示焦点在y轴上的椭圆。(2)椭圆的性质①范围:由标准方程22221xyab知||xa,||yb,说明椭圆位于直线xa,yb所围成的矩形里;②对称性:在曲线方程里,若以y代替y方程不变,所以若点(,)xy在曲线上时,点(,)xy也在曲线上,所以曲线关于x轴对称,同理,以x代替x方程不变,则曲线关于y轴对称。若同时以x代替x,y代替y方程也不变,则曲线关于原点对称。所以,椭圆关于x轴、y轴和原点对称。这时,坐标轴是椭圆的对称轴,原点是对称中心,椭圆的对称中心叫椭圆的中心;③顶点:确定曲线在坐标系中的位置,常需要求出曲线与x轴、y轴的交点坐标。在椭圆的标准方程中,令0x,得yb,则1(0,)Bb,2(0,)Bb是椭圆与y轴的两个交点。同理令0y得xa,即1(,0)Aa,2(,0)Aa是椭圆与x轴的两个交点。所以,椭圆与坐标轴的交点有四个,这四个交点叫做椭圆的顶点。同时,线段21AA、21BB分别叫做椭圆的长轴和短轴,它们的长分别为2a和2b,a和b分别叫做椭圆的长半轴长和短半轴长。由椭圆的对称性知:椭圆的短轴端点到焦点的距离为a;在22RtOBF中,2||OBb,2||OFc,22||BFa,且2222222||||||OFBFOB,即222cab;④离心率:椭圆的焦距与长轴的比cea叫椭圆的离心率。∵0ac,∴01e,且e越接近1,c就越接近a,从而b就越小,对应的椭圆越扁;反之,e越接近于0,c就越接近于0,从而b越接近于a,这时椭圆越接近于圆。当且仅当ab时,0c,两焦点重合,图形变为圆,方程为222xya。2.双曲线(1)双曲线的概念平面上与两点距离的差的绝对值为非零常数的动点轨迹是双曲线(12||||||2PFPFa)。注意:①式中是差的绝对值,在1202||aFF条件下;12||||2PFPFa时为双曲线的一支;21||||2PFPFa时为双曲线的另一支(含1F的一支);②当122||aFF时,12||||||2PFPFa表示两条射线;③当122||aFF时,12||||||2PFPFa不表示任何图形;④两定点12,FF叫做双曲线的焦点,12||FF叫做焦距。(2)双曲线的性质①范围:从标准方程12222byax,看出曲线在坐标系中的范围:双曲线在两条直线ax的外侧。即22ax,ax即双曲线在两条直线ax的外侧。②对称性:双曲线12222byax关于每个坐标轴和原点都是对称的,这时,坐标轴是双曲线的对称轴,原点是双曲线12222byax的对称中心,双曲线的对称中心叫做双曲线的中心。③顶点:双曲线和对称轴的交点叫做双曲线的顶点。在双曲线12222byax的方程里,对称轴是,xy轴,所以令0y得ax,因此双曲线和x轴有两个交点)0,()0,(2aAaA,他们是双曲线12222byax的顶点。令0x,没有实根,因此双曲线和y轴没有交点。1)注意:双曲线的顶点只有两个,这是与椭圆不同的(椭圆有四个顶点),双曲线的顶点分别是实轴的两个端点。2)实轴:线段2AA叫做双曲线的实轴,它的长等于2,aa叫做双曲线的实半轴长。虚轴:线段2BB叫做双曲线的虚轴,它的长等于2,bb叫做双曲线的虚半轴长。④渐近线:注意到开课之初所画的矩形,矩形确定了两条对角线,这两条直线即称为双曲线的渐近线。从图上看,双曲线12222byax的各支向外延伸时,与这两条直线逐渐接近。⑤等轴双曲线:1)定义:实轴和虚轴等长的双曲线叫做等轴双曲线。定义式:ab;2)等轴双曲线的性质:(1)渐近线方程为:xy;(2)渐近线互相垂直。注意以上几个性质与定义式彼此等价。亦即若题目中出现上述其一,即可推知双曲线为等轴双曲线,同时其他几个亦成立。3)注意到等轴双曲线的特征ab,则等轴双曲线可以设为:)0(22yx,当0时交点在x轴,当0时焦点在y轴上。⑥注意191622yx与221916yx的区别:三个量,,abc中,ab不同(互换)c相同,还有焦点所在的坐标轴也变了。3.抛物线(1)抛物线的概念平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。方程022ppxy叫做抛物线的标准方程。注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(2p,0),它的准线方程是2px;(2)抛物线的性质一条抛物线,由于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:pxy22,pyx22,pyx22.这四种抛物线的图形、标准方程、焦点坐标以及准线方程如下表:标准方程22(0)ypxp22(0)ypxp22(0)xpyp22(0)xpyp图形焦点坐标(,0)2p(,0)2p(0,)2p(0,)2p准线方程2px2px2py2py范围0x0x0y0y对称性x轴x轴y轴y轴顶点(0,0)(0,0)(0,0)(0,0)离心率1e1e1e1e说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调p的几何意义:是焦点到准线的距离。4.高考数学圆锥曲线部分知识点梳理一、方程的曲线:在平面直角坐标系中,如果某曲线C(看作适合某种条件的点的集合或轨迹)上的点与一个二元方程f(x,y)=0的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线。点与曲线的关系:若曲线C的方程是f(x,y)=0,则点P0(x0,y0)在曲线C上f(x0,y0)=0;点P0(x0,y0)不在曲线C上f(x0,y0)≠0。两条曲线的交点:若曲线C1,C2的方程分别为f1(x,y)=0,f2(x,y)=0,则点P0(x0,y0)是C1,C2的交点{0),(0),(002001yxfyxf方程组有n个不同的实数解,两条曲线就有n个不同的交点;方程组没有实数解,曲线就没有交点。二、圆:1、定义:点集{M||OM|=r},其中定点O为圆心,定长r为半径.2、方程:(1)标准方程:圆心在c(a,b),半径为r的圆方程是(x-a)2+(y-b)2=r2oFxyloxyFlxyoFl圆心在坐标原点,半径为r的圆方程是x2+y2=r2(2)一般方程:①当D2+E2-4F>0时,一元二次方程x2+y2+Dx+Ey+F=0叫做圆的一般方程,圆心为)2,2(ED半径是2422FED。配方,将方程x2+y2+Dx+Ey+F=0化为(x+2D)2+(y+2E)2=44F-ED22②当D2+E2-4F=0时,方程表示一个点(-2D,-2E);③当D2+E2-4F<0时,方程不表示任何图形.(3)点与圆的位置关系已知圆心C(a,b),半径为r,点M的坐标为(x0,y0),则|MC|<r点M在圆C内,|MC|=r点M在圆C上,|MC|>r点M在圆C内,其中|MC|=2020b)-(ya)-(x。(4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交有两个公共点;直线与圆相切有一个公共点;直线与圆相离没有公共点。②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心C(a,b)到直线Ax+By+C=0的距离22BACBbAad与半径r的大小关系来判定。三、圆锥曲线的统一定义:平面内的动点P(x,y)到一个定点F(c,0)的距离与到不通过这个定点的一条定直线l的距离之比是一个常数e(e>0),则动点的轨迹叫做圆锥曲线。其中定点F(c,0)称为焦点,定直线l称为准线,正常数e称为离心率。当0<e<1时,轨迹为椭圆;当e=1时,轨迹为抛物线;当e>1时,轨迹为双曲线。四、椭圆、双曲线、抛物线:椭圆双曲线抛物线定义1.到两定点F1,F2的距离之和为定值2a(2a|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(0e1)1.到两定点F1,F2的距离之差的绝对值为定值2a(02a|F1F2|)的点的轨迹2.与定点和直线的距离之比为定值e的点的轨迹.(e1)与定点和直线的距离相等的点的轨迹.轨迹条件点集:({M||MF1+|MF2|=2a,|F1F2|<2a}.点集:{M||MF1|-|MF2|.=±2a,|F2F2|>2a}.点集{M||MF|=点M到直线l的距离}.图形方程标准方程12222byax(ba0)12222byax(a0,b0)pxy22参数方程为离心角)参数(sincosbyax为离心角)参数(tansecbyaxptyptx222(t为参数)范围─axa,─byb|x|a,yRx0中心原点O(0,0)原点O(0,0)顶点(a,0),(─a,0),(0,b),(0,─b)(a,0),(─a,0)(0,0)对称轴x轴,y轴;长轴长2a,短轴长2bx轴,y轴;实轴长2a,虚轴长2b.x轴焦点F1(c,0),F2(─c,0)F1(c,0),F2(─c,0))0,2(pF准线x=±ca2准线垂直于长轴,且在椭圆外.x=±ca2准线垂直于实轴,且在两顶点的内侧.x=-2p准线与焦点位于顶点两侧,且到顶点的距离相等.焦距2c(c=22ba)2c(c=22ba)离心率)10(eace)1(eacee=1【备注1】双曲线:⑶等轴双曲线:双曲线222ayx称为等轴双曲线,其渐近线方程为xy,离心率2e.⑷共轭双曲线:以已知双曲线的虚轴为实轴,实轴为虚轴的双曲线,叫做已知双曲线的共轭双曲线.2222byax与2222byax互为共轭双曲线,它们具有共同的渐近线:02222byax.⑸共渐近线的双曲线系方程:)0(2222byax的渐近线方程为02222byax如果双曲线的渐近线为0byax时,它的双曲线方程可设为)0(2222byax.【备注2】抛物线:(1)抛物线2y=2px(p0)的焦点坐标是(2p,0),准线方程x=-2p,开口向右;抛物线2y=-2px(p0)的焦点坐标是(-2p,0),准线方程x=2p,开口向左;抛物线2x=2py(p0)的焦点坐标是(0,2p),准线方程y=-2p,开口向上;抛物线2x=-2py(p0)的焦点坐标是(0,-2p),准线方程y=2p,开口向下.(2)抛物线2y=2px(p0)上的点M(x0,y0)与焦点F的距离20pxMF;抛物线2y=-2px(p0)上的点M(x0,y0)与焦点F的距离02xpMF(3)设抛物线的标准方程为2y=2px(p0),则抛物线的焦点到其顶点的距离为2p,顶点到准线的距离2p,焦点到准线的距离为p.(4)已知过抛物线2y=2px(p0)焦点的直线交抛物线于A、B两点,则线段AB
本文标题:完美版圆锥曲线知识点总结
链接地址:https://www.777doc.com/doc-1334387 .html