您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > leslie人口增长模型模型
1人口增长预测模型摘要本文建立了我国人口增长的预测模型,对各年份全国人口总量增长的中短期和长期趋势作出了预测,并对人口老龄化、人口抚养比等一系列评价指标进行了预测。最后提出了有关人口控制与管理的措施。模型Ⅰ:建立了Logistic人口阻滞增长模型,利用附件2中数据,结合网上查找补充的数据,分别根据从1954年、1963年、1980年到2005年三组总人口数据建立模型,进行预测,把预测结果与附件1《国家人口发展战略研究报告》中提供的预测值进行分析比较。得出运用1980年到2005年的总人口数建立模型预测效果好,拟合的曲线的可决系数为0.9987。运用1980年到2005年总人口数据预测得到2010年、2020年、2033年我国的总人口数分别为13.55357亿、14.18440亿、14.70172亿。模型Ⅱ:考虑到人口年龄结构对人口增长的影响,建立了按年龄分布的女性模型(Leslie模型):以附件2中提供的2001年的有关数据,构造Leslie矩阵,建立相应Leslie模型;然后,根据中外专家给出的人口更替率1.8,构造Leslie矩阵,建立相应的Leslie模型。首先,分别预测2002年到2050年我国总人口数、劳动年龄人口数、老年人口数(见附录8),然后再用预测求得的数据分别对全国总人口数、劳动年龄人口数的发展情况进行分析,得出:我国总人口在2010年达到14.2609亿人,在2020年达到14.9513亿人,在2023年达到峰值14.985亿人;预测我国在短期内劳动力不缺,但须加强劳动力结构方面的调整。其次,对人口老龄化问题、人口抚养比进行分析。得到我国老龄化在加速,预计本世纪40年代中后期形成老龄人口高峰平台,60岁以上老年人口达4.45亿人,比重达33.277%;65岁以上老年人口达3.51亿人,比重达25.53%;人口抚养呈现增加的趋势。再次,讨论我国人口的控制,预测出将来我国育龄妇女人数与生育旺盛期育龄妇女人数,得到育龄妇女人数在短期内将达到高峰,随后又下降的趋势的结论。最后,分别对模型Ⅰ与模型Ⅱ进行残差分析、优缺点评价与推广。关键词Logistic人口模型Leslie人口模型人口增长预测MATLAB软件2§1、问题重述一、背景知识:中国是一个人口大国,人口问题始终是制约我国发展的关键因素之一。我国人口发展经历了多个阶段,近年来中国的人口发展出现了一些新的特点,例如,老龄化进程加速、出生人口性别比持续升高,以及乡村人口城镇化等因素,这些都影响着中国人口的增长。全面建设小康社会时期是我国社会快速转型期,人口发展面临着前所未有的复杂局面,人口安全面临的风险依然存在二、相关数据:附件1《国家人口发展战略研究报告》附件2人口数据(《中国人口统计年鉴》中的部分数据)及其说明根据已有数据三、要解决的问题:1、试从中国的实际情况和人口增长的上述特点出发,参考附件2中的相关数据(也可以搜索相关文献和补充新的数据),建立中国人口增长的数学模型,并由此对中国人口增长的中短期和长期趋势做出预测;特别要指出你们模型中的优点与不足之处。2、利用所建立模型的预测结果,参照附件1的相关叙述对反映中国人口增长特点的一系列指标如人口老龄化、人口抚养比等进行分析预测。3、根据模型的计算结果,对未来人口发展高峰进行预测并针对中国人口的调控和管理进行分析。§2、问题分析人口的变化受到众多方面因素的影响,因此对人口的预测与控制也就十分复杂,很难在一个模型中综合考虑到各个因素的影响。为了更好的解决此问题,我们分析了题目以及附录1中所给的相关信息,考虑到可以根据对人口增长不同的评价指标及不同的时期建立多个模型分别加以讨论。一、从附件1中,我们看到过去一些专家对中国的总人口数做出了2010年、2020年分别达到13.6亿人和14.5亿人,2033年前后达到峰值15亿人左右的预测。因而,我们也可以先对总人口的增长趋势做出自己的预测与专家预测数据进行比较,对于预测所要用到的一些相关数据,我们作了相应的补充,由此我们建立了模型Ⅰ:阻滞增长模型。二、模型Ⅰ只考虑了人口总数,对人口总数进行了预测分析。但实际中在对人口进行分析时,按年龄段分布的人口结构是非常重要的。在人口总数一定时,不同年龄段的人的生育率和死亡率是不同的,它们对人口未来发展的影响也是很不一样的。为了讨论不同年龄段的人口分布对人口增长的影响,我们依据附件2建立了模型Ⅱ:按年龄分布的Leslie模型。三、由模型Ⅰ和模型Ⅱ的结果我们预测了人口总数的发展趋势,由模型Ⅱ的计算结果我们还能够得到各年份处在各年龄段的人口数量、男女比率的预测值。根据这些预测值我们可以计算出反映人口增长特点的其他指标,由此我们可以对模型的计算结果进行进一步的分析。3§3、合理的假设1、社会稳定,不会发生重大自然灾害和战争iisb,不随时间而变化2、超过90岁的妇女(老寿星)都按90岁年龄计算3、在较短的时间内,平均年龄变化较小,可以认为不变4、不考虑移民对人口总数的影响§4、名词解释与符号说明一、名词解释1、总和生育率——指一定时期(如某一年)各年龄组妇女生育率的合计数,说明每名妇女按照某一年的各年龄组生育率度过育龄期,平均可能生育的子女数,是衡量生育水平最常用的指标之一。2、更替水平——指这样一个生育水平,同一批妇女生育女儿的数量恰好能替代她们本身。一旦达到生育更替水平,出生和死亡将逐渐趋于均衡,在没有国际迁入与迁出的情况下,人口将最终停止增长,保持稳定状态。3、人口抚养比——指人口总体中非劳动年龄人口数与劳动年龄人口数之比。通常用百分比表示。说明每100名劳动年龄人口大致要负担多少名非劳动年龄人口。用于从人口角度反映人口与经济发展的基本关系。根据劳动年龄人口的两种不同定义(15-59岁人口或15-64岁人口),计算总抚养有两种方式4、人口老龄化——指人口中老年人比重日益上升的现象。促使人口老龄化的直接原因是生育率和死亡率降低,主要是生育率降低。一般认为,如果人口中65岁及以上老年人口比重超过7%,或60岁及以上老年人口比重超过10%,那么该人口就属于老年型。5、出生人口性别比——是活产男婴数与活产女婴数的比值,通常用女婴数量为100时所对应的男婴数来表示。正常情况下,出生性别比是由生物学规律决定的,保持在103~107之间。二、符号说明序号符号意义1:t表示年份(选定初始年份的0t)2r人口增长率3:x人口数量4:mx自然资源和环境条件所能容纳的最大人口数量5:2R可决系数6:mitni,2,1),(在时间段t第i年龄组的人口总数7:)90,,2,1,0ibi(第i年龄组的生育率8:)90,,2,1,0idi(第i年龄组的死亡率9:)90,,2,1,0(isi第i年龄组的存活率10:LLeslie矩阵11:0Z2001年全国人口总数12:sz2001年城市总人口13:zz2001年镇总人口14:xz2001年乡总人口415:mini,2,1),0(2001年第i年龄段的人口总数16:)3,2,1(ivi3,2,1i时分别表示市、镇、乡的女孩出生率17:)j(Lj时段具有劳动能力的人口18:)j(社会的抚养比指数19:k总和生育率20:)(jKij时段i年龄组中女性所占的百分比§5、模型的建立与求解模型Ⅰ:阻滞增长模型(Logistic模型)[1]一、模型的准备阻滞增长模型的原理:阻滞增长模型是考虑到自然资源、环境条件等因素对人口增长的阻滞作用,对指数增长模型的基本假设进行修改后得到的。阻滞作用体现在对人口增长率r的影响上,使得r随着人口数量x的增加而下降。若将r表示为x的函数)(xr。则它应是减函数。于是有:0)0(,)(xxxxrdtdx(1)对)(xr的一个最简单的假定是,设)(xr为x的线性函数,即)0,0()(srsxrxr(2)设自然资源和环境条件所能容纳的最大人口数量mx,当mxx时人口不再增长,即增长率0)(mxr,代入(2)式得mxrs,于是(2)式为)1()(mxxrxr(3)将(3)代入方程(1)得:0)0()1(xxxxrxdtdxm(4)解方程(4)可得:rtmmexxxtx)1(1)(0(5)二、模型的建立为了对以后一定时期内的人口数做出预测,我们首先从中国经济统计数据库()上查到我国从1954年到2005年全国总人口的5数据如表1。表1各年份全国总人口数(单位:千万)年份195419551956195719581959196019611962总人口60.261.562.864.666.067.266.265.967.3年份196319641965196619671968196919701971总人口69.170.472.574.576.378.580.783.085.2年份197219731974197519761977197819791980总人口87.189.290.992.493.795.096.25997.598.705年份198119821983198419851986198719881989总人口100.1101.654103.008104.357105.851107.5109.3111.026112.704年份199019911992199319941995199619971998总人口114.333115.823117.171118.517119.850121.121122.389123.626124.761年份1999200020012002200320042005总人口125.786126.743127.627128.453129.227129.988130.7561、将1954年看成初始时刻即0t,则1955为1t,以次类推,以2005年为51t作为终时刻。用函数(5)对表1中的数据进行非线性拟合,运用Matlab编程(程序见附录1)得到相关的参数-0.0336,180.9871rxm,可以算出可决系数(可决系数是判别曲线拟合效果的一个指标):9959.0)yy()yˆy(1R51i2i51i2ii2由可决系数来看拟合的效果比较理想。所以得到中国各年份人口变化趋势的拟合曲线:tetx0336.0.0)12.609871.180(19871.180)((6)根据曲线(6)我们可以对2010年(56t)、2020年(66t)、及2033年(79t)进行预测得(单位:千万):6028.158)79(,5400.148)66(,6161.138)56(xxx结果分析:从附录1所给信息可知从1951年至1958年为我国第一次出生人口高峰,形成了中国人口规模“由缓到快”的增长基础;因此这段时期人口波动较大,可能影响模型结果的准确性。1959、1960、1961年为三年自然灾害时期,这段时期人口的增长受到很大影响,1962年处于这种影响的滞后期,人口的增长也受到很大影响。总的来说1951-1962年的人口增长的随机误差不是服从正态分布,由于上面的曲线拟合是用最小二乘法,所以很难保证拟合的准确性。因此我们再选择1963年作为初始年份对表1中的数据进行拟合。2、将1963年看成初始时刻即0t,以2005年为32t作为终时刻。运用Matlab编程(程序见附录2)得到相关的参数0.0484,151.4513rxm,可以算出可决系数9994.02R得到中国各年份人口变化趋势的另一拟合曲线:6tetx0484.0)11.694513.151(14513.151)((7)根据曲线(7)我们可以对2010年(47t)、2020年(57t)、及2033年(70t)进行预测得(单位:千万):145.5908)70(,140.8168)57(,134.9190)47(xxx结果分析:1963年-1979年其间,人口的增长基本上是按照自然的规律增长,特别是在农村是这样,城市受到收入的影响,生育率
本文标题:leslie人口增长模型模型
链接地址:https://www.777doc.com/doc-1339451 .html