您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017人教版八年级数学下册期末试卷含答案
八年级下册期末测试一、选择题(每小题3分,共30分)1.下列式子中,属于最简二次根式的是()A.12B.23C.0.3D.72.▱ABCD中,∠A=40°,则∠C=()A.40°B.50°C.130°D.140°3.下列计算错误的是()A.3+22=52B.8÷2=2C.2×3=6D.8-2=24.(重庆中考)某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初三(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.2,乙的成绩的方差是0.8,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定5.下列各组数不能作为直角三角形三边长的是()A.3,4,5B.3,4,5C.0.3,0.4,0.5D.30,40,506.函数y=x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限7.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角8.2016年,某市发生了严重干旱,该市政府号召居民节约用水.为了解居民用水情况,在某小区随机抽查了10户家庭的月用水量,结果统计如图.则关于这10户家庭的月用水量,下列说法错误的是()A.众数是6B.中位数是6C.平均数是6D.方差是49.(孝感中考)如图,直线y=-x+m与y=nx+4n(n≠0)的交点的横坐标为-2,则关于x的不等式-x+mnx+4n0的整数解为()A.-1B.-5C.-4D.-310.(牡丹江中考)如图,矩形ABCD中,O为AC的中点,过点O的直线分别与AB,CD交于点E,F,连接BF交AC于点M,连接DE,BO.若∠COB=60°,FO=FC,则下列结论:①FB⊥OC,OM=CM;②△EOB≌△CMB;③四边形EBFD是菱形;④MB∶OE=3∶2.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题4分,共24分)11.二次根式x-2有意义,则x的取值范围是.12.将正比例函数y=-2x的图象向上平移3个单位,则平移后所得图象的解析式是______________.13.已知菱形的两条对角线长分别为1和4,则菱形的面积为____________.14.若已知方程组2x+y=b,x-y=a的解是x=-1,y=3.则直线y=-2x+b与直线y=x-a的交点坐标是__________.15.如图,在△MBN中,已知BM=6,BN=7,MN=10,点A,C,D分别是MB,NB,MN的中点,则四边形ABCD的周长是.16.如图,在矩形ABCD中,AC,BD相交于点O,AE平分∠BAD交BC于点E,若∠CAE=15°,则∠BOE的度数为____________.三、解答题(共66分)17.(8分)计算:3(2-3)-24-|6-3|.18.(8分)如图,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,折痕为AE.若BC=10cm,AB=8cm,求EF的长.19.(8分)已知,一次函数y=kx+3的图象经过点A(1,4).(1)求这个一次函数的解析式;(2)试判断点B(-1,5),C(0,3),D(2,1)是否在这个一次函数的图象上.20.(8分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.(1)求证:AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.21.(10分)某校要从小王和小李两名同学中挑选一人参加全市知识竞赛,在最近的五次选拔测试中,他俩的成绩分别如下表:第1次第2次第3次第4次第5次小王60751009075小李70901008080根据上表解答下列问题:(1)完成下表:姓名平均成绩(分)中位数(分)众数(分)方差小王807575190小李(2)在这五次测试中,成绩比较稳定的同学是谁?若将80分以上(含80分)的成绩视为优秀,则小王、小李在这五次测试中的优秀率各是多少?(3)历届比赛表明,成绩达到80分以上(含80分)就很可能获奖,成绩达到90分以上(含90分)就很可能获得一等奖,那么你认为选谁参加比赛比较合适?说明你的理由.22.(12分)(潜江中考)为改善生态环境,防止水土流失,某村计划在汉江堤坡种植白杨树,现甲、乙两家林场有相同的白杨树苗可供选择,其具体销售方案如下:甲林场购树苗数量销售单价不超过1000棵时4元/棵超过1000棵的部分3.8元/棵乙林场购树苗数量销售单价不超过2000棵时4元/棵超过2000棵的部分3.6元/棵设购买白杨树苗x棵,到两家林场购买所需费用分别为y甲(元),y乙(元).(1)该村需要购买1500棵白杨树苗,若都在甲林场购买所需费用为____________元,若都在乙林场购买所需费用为____________元;(2)分别求出y甲,y乙与x之间的函数关系式;(3)如果你是该村的负责人,应该选择到哪家林场购买树苗合算,为什么?23.(12分)以四边形ABCD的边AB,AD为边分别向外侧作等边△ABF和等边△ADE,连接EB,FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是EB=FD;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.参考答案1.D2.A3.A4.A)5.A6.B7.B8.D9.D10.C提示:①③④正确,②错误.11.x≥212.y=-2x+313.214.(-1,3)15.1316.75°17.原式=6-3-26-(3-6)=-6.18.由条件知AF=AD=BC=10cm,在Rt△ABF中,BF=AF2-AB2=102-82=6(cm),∴FC=BC-BF=10-6=4(cm).设EF=xcm,则DE=EF=x,CE=8-x,在Rt△CEF中,EF2=CE2+FC2,即x2=(8-x)2+42.解得x=5,即EF=5cm.19.(1)由题意,得k+3=4,解得k=1,∴该一次函数的解析式是y=x+3.(2)由(1)知,一次函数的解析式是y=x+3.当x=-1时,y=2,即点B(-1,5)不在该一次函数图象上;当x=0时,y=3,即点C(0,3)在该一次函数图象上;当x=2时,y=5,即点D(2,1)不在该一次函数图象上.20.(1)证明:∵AC∥DE,∴∠ACD=∠EDF.∵BD=CF,∴BD+DC=CF+DC,即BC=DF.又∵∠A=∠E,∴△ABC≌△EFD(AAS).∴AB=EF.(2)猜想:四边形ABEF为平行四边形,理由如下:由(1)知△ABC≌△EFD,∴∠B=∠F.∴AB∥EF.又∵AB=EF,∴四边形ABEF为平行四边形.21.(1)848080104(2)因为小王的方差是190,小李的方差是104,而104<190,所以小李成绩较稳定.小王的优秀率为25×100%=40%,小李的优秀率为45×100%=80%.(3)因为小李的成绩较小王稳定,且优秀率比小王的高,因此选小李参加比赛比较合适.22.(1)59006000(2)y甲=4x(0≤x≤1000且x为整数),3.8x+200(x1000且x为整数);y乙=4x(0≤x≤2000且x为整数),3.6x+800(x2000且x为整数).(3)①当0≤x≤1000时,两家林场单价一样,因此到两林场购买所需要费用都一样;②当1000<x≤2000时,甲林场有优惠而乙林场无优惠,∴当1000<x≤2000时,到甲林场购买合算;③当x>2000时,y甲=3.8x+200,y乙=3.6x+800,y甲-y乙=3.8x+200-(3.6x+800)=0.2x-600.(ⅰ)当y甲=y乙时,0.2x-600=0,解得x=3000.∴当x=3000时,到两林场购买所需要费用都一样;(ⅱ)当y甲y乙时,0.2x-6000,解得x<3000.∴当2000<x<3000时,到甲林场购买合算;(ⅲ)当y甲y乙时,0.2x-6000,解得x>3000.∴当x>3000时,到乙林场购买合算.综上所述,当0≤x≤1000或x=3000时,到两林场购买所需要费用都一样;当1000<x<3000时,到甲林场购买合算;当x>3000时,到乙林场购买合算.23.(2)EB=FD.证明:∵△AFB为等边三角形,∴AF=AB,∠FAB=60°.∵△ADE为等边三角形,∴AD=AE,∠EAD=60°.∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE.∴△FAD≌△BAE.∴EB=FD.(3)∠EGD不发生变化.∵△ADE为等边三角形,∴∠AED=∠EDA=60°.∵△ABF,△AED均为等边三角形,∴AB=AF,∠FAB=60°,AE=AD,∠EAD=60°.∴∠FAD=∠BAE.∴△FAD≌△BAE.∴∠AEB=∠ADF.设∠AEB为x°,则∠ADF也为x°,于是有∠BED为(60-x)°,∠EDF为(60+x)°,∴∠EGD=180°-∠BED-∠EDF=180°-(60-x)°-(60+x)°=60°.
本文标题:2017人教版八年级数学下册期末试卷含答案
链接地址:https://www.777doc.com/doc-1340884 .html