您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 2017中考数学试题汇编:二次函数
2017中考试题汇编--------二次函数(2017贵州铜仁)25.(14分)如图,抛物线y=x2+bx+c经过点A(﹣1,0),B(0,﹣2),并与x轴交于点C,点M是抛物线对称轴l上任意一点(点M,B,C三点不在同一直线上).(1)求该抛物线所表示的二次函数的表达式;(2)在抛物线上找出两点P1,P2,使得△MP1P2与△MCB全等,并求出点P1,P2的坐标;(3)在对称轴上是否存在点Q,使得∠BQC为直角,若存在,作出点Q(用尺规作图,保留作图痕迹),并求出点Q的坐标.【分析】(1)利用待定系数法求二次函数的表达式;(2)分三种情况:①当△P1MP2≌△CMB时,取对称点可得点P1,P2的坐标;②当△BMC≌△P2P1M时,构建▱P2MBC可得点P1,P2的坐标;③△P1MP2≌△CBM,构建▱MP1P2C,根据平移规律可得P1,P2的坐标;(3)如图3,先根据直径所对的圆周角是直角,以BC为直径画圆,与对称轴的交点即为点Q,这样的点Q有两个,作辅助线,构建相似三角形,证明△BDQ1∽△Q1EC,列比例式,可得点Q的坐标.【解答】解:(1)把A(﹣1,0),B(0,﹣2)代入抛物线y=x2+bx+c中得:,解得:,∴抛物线所表示的二次函数的表达式为:y=x2﹣x﹣2;(2)如图1,P1与A重合,P2与B关于l对称,∴MB=P2M,P1M=CM,P1P2=BC,∴△P1MP2≌△CMB,∵y=x2﹣x﹣2=(x﹣)2﹣,此时P1(﹣1,0),∵B(0,﹣2),对称轴:直线x=,∴P2(1,﹣2);如图2,MP2∥BC,且MP2=BC,此时,P1与C重合,∵MP2=BC,MC=MC,∠P2MC=∠BP1M,∴△BMC≌△P2P1M,∴P1(2,0),由点B向右平移个单位到M,可知:点C向右平移个单位到P2,当x=时,y=(﹣)2﹣=,∴P2(,);如图3,构建▱MP1P2C,可得△P1MP2≌△CBM,此时P2与B重合,由点C向左平移2个单位到B,可知:点M向左平移2个单位到P1,∴点P1的横坐标为﹣,当x=﹣时,y=(﹣﹣)2﹣=4﹣=,∴P1(﹣,),P2(0,﹣2);(3)如图3,存在,作法:以BC为直径作圆交对称轴l于两点Q1、Q2,则∠BQ1C=∠BQ2C=90°;过Q1作DE⊥y轴于D,过C作CE⊥DE于E,设Q1(,y)(y>0),易得△BDQ1∽△Q1EC,∴,∴=,y2+2y﹣=0,解得:y1=(舍),y2=,∴Q1(,),同理可得:Q2(,);综上所述,点Q的坐标是:(,)或(,).【点评】本题考查了待定系数法求函数解析式、二次函数图象上点的坐标特征、二次函数的性质、圆周角定理以及三角形全等的性质和判定,解题的关键是:(1)利用待定系数法求出函数解析式;(2)利用二次函数的对称性解决三角形全等问题;(3)分类讨论.本题属于中档题,难度不大,解决该题型题目时,利用二次函数的对称性,再结合相似三角形、方程解决问题是关键.(2017湖南)27.(12分)如图,正方形ABCD的边长为1,点E为边AB上一动点,连结CE并将其绕点C顺时针旋转90°得到CF,连结DF,以CE、CF为邻边作矩形CFGE,GE与AD、AC分别交于点H、M,GF交CD延长线于点N.(1)证明:点A、D、F在同一条直线上;(2)随着点E的移动,线段DH是否有最小值?若有,求出最小值;若没有,请说明理由;(3)连结EF、MN,当MN∥EF时,求AE的长.【分析】(1)由△DCF≌△BCE,可得∠CDF=∠B=90°,即可推出∠CDF+∠CDA=180°,由此即可证明.(2)有最小值.设AE=x,DH=y,则AH=1﹣y,BE=1﹣x,由△ECB∽△HEA,推出=,可得=,推出y=x2﹣x+1=(x﹣)2+,由a=1>0,y有最小值,最小值为.(3)只要证明△CFN≌△CEM,推出∠FCN=∠ECM,由∠MCN=45°,可得∠FCN=∠ECM=∠BCE=22.5°,在BC上取一点G,使得GC=GE,则△BGE是等腰直角三角形,设BE=BG=a,则GC=GE=a,可得a+a=1,求出a即可解决问题;【解答】(1)证明:∵四边形ABCD是正方形,∴CD=CB,∠BCD=∠B=∠ADC=90°,∵CE=CF,∠ECF=90°,∴∠ECF=∠DCB,∴∠DCF=∠BCE,∴△DCF≌△BCE,∴∠CDF=∠B=90°,∴∠CDF+∠CDA=180°,∴点A、D、F在同一条直线上.(2)解:有最小值.理由:设AE=x,DH=y,则AH=1﹣y,BE=1﹣x,∵四边形CFGE是矩形,∴∠CEG=90°,∴∠CEB+∠AEH=90°CEB+∠ECB=90°,∴∠ECB=∠AEH,∵∠B=∠EAH=90°,∴△ECB∽△HEA,∴=,∴=,∴y=x2﹣x+1=(x﹣)2+,∵a=1>0,∴y有最小值,最小值为.∴DH的最小值为.(3)解:∵四边形CFGE是矩形,CF=CE,∴四边形CFGE是正方形,∴GF=GE,∠GFE=∠GEF=45°,∵NM∥EF,∴∠GNM=∠GFE,∠GMN=∠GEF,∴∠GMN=∠GNM,∴GN=GM,∴FN=EM,∵CF=CE,∠CFN=∠CEM,∴△CFN≌△CEM,∴∠FCN=∠ECM,∵∠MCN=45°,∴∠FCN=∠ECM=∠BCE=22.5°,在BC上取一点G,使得GC=GE,则△BGE是等腰直角三角形,设BE=BG=a,则GC=GE=a,∴a+a=1,∴a=﹣1,∴AE=AB﹣BE=1﹣(﹣1)=2﹣.【点评】本题考查四边形综合题、正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、相似三角形的判定和性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会构建二次函数解决最值问题,学会用方程的思想思考问题,属于中考压轴题.(2017辽宁)28.(14分)如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.(1)填空:b=,c=4;(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.【分析】(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入可得到抛物线的解析式,从而可确定出b、c的值;(2)连结QC.先求得点C的坐标,则PC=5﹣t,依据勾股定理可求得AC=5,CQ2=t2+16,接下来,依据CQ2﹣CP2=AQ2﹣AP2列方程求解即可;(3)过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,首先证明△PAG∽△ACO,依据相似三角形的性质可得到PG=t,AG=t,然后可求得PE、DF的长,然后再证明△MDP≌PEQ,从而得到PD=EQ=t,MD=PE=3+t,然后可求得FM和OF的长,从而可得到点M的坐标,然后将点M的坐标代入抛物线的解析式求解即可;(4)连结:OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.首先依据三角形的中位线定理得到RH=QO=t,RH∥OQ,NR=AP=t,则RH=NR,接下来,依据等腰三角形的性质和平行线的性质证明NH是∠QNQ′的平分线,然后求得直线NR和BC的解析式,最后求得直线NR和BC的交点坐标即可.【解答】解:(1)设抛物线的解析式为y=a(x+3)(x﹣4).将a=﹣代入得:y=﹣x2+x+4,∴b=,c=4.(2)在点P、Q运动过程中,△APQ不可能是直角三角形.理由如下:连结QC.∵在点P、Q运动过程中,∠PAQ、∠PQA始终为锐角,∴当△APQ是直角三角形时,则∠APQ=90°.将x=0代入抛物线的解析式得:y=4,∴C(0,4).∵AP=OQ=t,∴PC=5﹣t,∵在Rt△AOC中,依据勾股定理得:AC=5,在Rt△COQ中,依据勾股定理可知:CQ2=t2+16,在Rt△CPQ中依据勾股定理可知:PQ2=CQ2﹣CP2,在Rt△APQ中,AQ2﹣AP2=PQ2,∴CQ2﹣CP2=AQ2﹣AP2,即(3+t)2﹣t2=t2+16﹣(5﹣t)2,解得:t=4.5.∵由题意可知:0≤t≤4,∴t=4.5不合题意,即△APQ不可能是直角三角形.(3)如图所示:过点P作DE∥x轴,分别过点M、Q作MD⊥DE、QE⊥DE,垂足分别为D、E,MD交x轴与点F,过点P作PG⊥x轴,垂足为点G,则PG∥y轴,∠E=∠D=90°.∵PG∥y轴,∴△PAG∽△ACO,∴==,即==,∴PG=t,AG=t,∴PE=GQ=GO+OQ=AO﹣AG+OQ=3﹣t+t=3+t,DF=GP=t.∵∠MPQ=90°,∠D=90°,∴∠DMP+∠DPM=∠EPQ+∠DPM=90°,∴∠DMP=∠EPQ.又∵∠D=∠E,PM=PQ,∴△MDP≌PEQ,∴PD=EQ=t,MD=PE=3+t,∴FM=MD﹣DF=3+t﹣t=3﹣t,OF=FG+GO=PD+OA﹣AG=3+t﹣t=3+t,∴M(﹣3﹣t,﹣3+t).∵点M在x轴下方的抛物线上,∴﹣3+t=﹣×(﹣3﹣t)2+×(﹣3﹣t)+4,解得:t=.∵0≤t≤4,∴t=.(4)如图所示:连结OP,取OP的中点R,连结RH,NR,延长NR交线段BC与点Q′.∵点H为PQ的中点,点R为OP的中点,∴RH=QO=t,RH∥OQ.∵A(﹣3,0),N(﹣,0),∴点N为OA的中点.又∵R为OP的中点,∴NR=AP=t,∴RH=NR,∴∠RNH=∠RHN.∵RH∥OQ,∴∠RHN=∠HNO,∴∠RNH=∠HNO,即NH是∠QNQ′的平分线.设直线AC的解析式为y=mx+n,把点A(﹣3,0)、C(0,4)代入得:,解得:m=,n=4,∴直线AC的表示为y=x+4.同理可得直线BC的表达式为y=﹣x+4.设直线NR的函数表达式为y=x+s,将点N的坐标代入得:×(﹣)+s=0,解得:s=2,∴直线NR的表述表达式为y=x+2.将直线NR和直线BC的表达式联立得:,解得:x=,y=,∴Q′(,).【点评】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、相似三角形的性质和判定、全等三角形的性质和判定,依据勾股定理列出关于t的方程是解答问题(2)的关键;求得点M的坐标(用含t的式子表示)是解答问题(3)的关键;证得NH为∠QHQ′的平分线是解答问题(4)的关键.(2017山东)25.(12分)如图1,在平面直角坐标系中,O是坐标原点,抛物线y=﹣x2﹣x+8与x轴正半轴交于点A,与y轴交于点B,连接AB,点M,N分别是OA,AB的中点,Rt△CDE≌Rt△ABO,且△CDE始终保持边ED经过点M,边CD经过点N,边DE与y轴交于点H,边CD与y轴交于点G.(1)填空:OA的长是8,∠ABO的度数是30度;(2)如图2,当DE∥AB,连接HN.①求证:四边形AMHN是平行四边形;②判断点D是否在该抛物线的对称轴上,并说明理由;(3)如图3,当边CD经过点O时,(此时点O与点G重合),过点D作DQ∥OB,交AB延长线上于点Q,延长ED到点K,使DK=DN,过点K作KI∥OB,在KI上取一点P,使得∠PDK=45°(点P,Q在直线ED的同侧),连接PQ,请直接写出PQ的长.【分析】(1)先求抛物线与两坐标轴的交点坐标,表示OA和OB的长,利用正切值可得∠ABO=30°;(2)①根据三角形的
本文标题:2017中考数学试题汇编:二次函数
链接地址:https://www.777doc.com/doc-1344477 .html