您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 切线长定理、弦切角定理、切割线定理、相交弦定理
1切线长定理、弦切角定理、切割线定理、相交弦定理以及与圆有关的比例线段[学习目标]1.切线长概念切线长是在经过圆外一点的圆的切线上,这点和切点之间的线段的长度,“切线长”是切线上一条线段的长,具有数量的特征,而“切线”是一条直线,它不可以度量长度。2.切线长定理对于切线长定理,应明确(1)若已知圆的两条切线相交,则切线长相等;(2)若已知两条切线平行,则圆上两个切点的连线为直径;(3)经过圆外一点引圆的两条切线,连结两个切点可得到一个等腰三角形;(4)经过圆外一点引圆的两条切线,切线的夹角与过切点的两个半径的夹角互补;(5)圆外一点与圆心的连线,平分过这点向圆引的两条切线所夹的角。3.弦切角:顶点在圆上,一边和圆相交,另一边和圆相切的角。直线AB切⊙O于P,PC、PD为弦,图中几个弦切角呢?(四个)4.弦切角定理:弦切角等于其所夹的弧所对的圆周角。5.弄清和圆有关的角:圆周角,圆心角,弦切角,圆内角,圆外角。6.遇到圆的切线,可联想“角”弦切角,“线”切线的性质定理及切线长定理。7.与圆有关的比例线段定理图形已知结论证法相交弦定理⊙O中,AB、CD为弦,交于P.PA·PB=PC·PD.连结AC、BD,证:△APC∽△DPB.相交弦定理的推论⊙O中,AB为直径,CD⊥AB于P.PC2=PA·PB.用相交弦定理.2切割线定理⊙O中,PT切⊙O于T,割线PB交⊙O于APT2=PA·PB连结TA、TB,证:△PTB∽△PAT切割线定理推论PB、PD为⊙O的两条割线,交⊙O于A、CPA·PB=PC·PD过P作PT切⊙O于T,用两次切割线定理圆幂定理⊙O中,割线PB交⊙O于A,CD为弦P'C·P'D=r2-OP'2PA·PB=OP2-r2r为⊙O的半径延长P'O交⊙O于M,延长OP'交⊙O于N,用相交弦定理证;过P作切线用切割线定理勾股定理证8.圆幂定理:过一定点P向⊙O作任一直线,交⊙O于两点,则自定点P到两交点的两条线段之积为常数||(R为圆半径),因为叫做点对于⊙O的幂,所以将上述定理统称为圆幂定理。【典型例题】例1.如图1,正方形ABCD的边长为1,以BC为直径。在正方形内作半圆O,过A作半圆切线,切点为F,交CD于E,求DE:AE的值。图1解:由切线长定理知:AF=AB=1,EF=CE设CE为x,在Rt△ADE中,由勾股定理∴,,3例2.⊙O中的两条弦AB与CD相交于E,若AE=6cm,BE=2cm,CD=7cm,那么CE=_________cm。图2解:由相交弦定理,得AE·BE=CE·DE∵AE=6cm,BE=2cm,CD=7cm,,∴,即∴CE=3cm或CE=4cm。故应填3或4。点拨:相交弦定理是较重要定理,结果要注意两种情况的取舍。例3.已知PA是圆的切线,PCB是圆的割线,则________。解:∵∠P=∠P∠PAC=∠B,∴△PAC∽△PBA,∴,∴。又∵PA是圆的切线,PCB是圆的割线,由切割线定理,得∴,即,故应填PC。点拨:利用相似得出比例关系式后要注意变形,推出所需结论。4例4.如图3,P是⊙O外一点,PC切⊙O于点C,PAB是⊙O的割线,交⊙O于A、B两点,如果PA:PB=1:4,PC=12cm,⊙O的半径为10cm,则圆心O到AB的距离是___________cm。图3解:∵PC是⊙O的切线,PAB是⊙O的割线,且PA:PB=1:4∴PB=4PA又∵PC=12cm由切割线定理,得∴∴,∴∴PB=4×6=24(cm)∴AB=24-6=18(cm)设圆心O到AB距离为dcm,由勾股定理,得故应填。例5.如图4,AB为⊙O的直径,过B点作⊙O的切线BC,OC交⊙O于点E,AE的延长线交BC于点D,(1)求证:;(2)若AB=BC=2厘米,求CE、CD的长。图4点悟:要证,即要证△CED∽△CBE。证明:(1)连结BE5(2)。又∵,∴厘米。点拨:有切线,并需寻找角的关系时常添辅助线,为利用弦切角定理创造条件。例6.如图5,AB为⊙O的直径,弦CD∥AB,AE切⊙O于A,交CD的延长线于E。图5求证:证明:连结BD,∵AE切⊙O于A,∴∠EAD=∠ABD∵AE⊥AB,又AB∥CD,∴AE⊥CD∵AB为⊙O的直径∴∠ADB=90°∴∠E=∠ADB=90°∴△ADE∽△BAD∴∴∵CD∥AB∴AD=BC,∴6例7.如图6,PA、PC切⊙O于A、C,PDB为割线。求证:AD·BC=CD·AB图6点悟:由结论AD·BC=CD·AB得,显然要证△PAD∽△PBA和△PCD∽△PBC证明:∵PA切⊙O于A,∴∠PAD=∠PBA又∠APD=∠BPA,∴△PAD∽△PBA∴同理可证△PCD∽△PBC∴∵PA、PC分别切⊙O于A、C∴PA=PC∴∴AD·BC=DC·AB例8.如图7,在直角三角形ABC中,∠A=90°,以AB边为直径作⊙O,交斜边BC于点D,过D点作⊙O的切线交AC于E。图7求证:BC=2OE。点悟:由要证结论易想到应证OE是△ABC的中位线。而OA=OB,只须证AE=CE。证明:连结OD。∵AC⊥AB,AB为直径∴AC为⊙O的切线,又DE切⊙O于D∴EA=ED,OD⊥DE∵OB=OD,∴∠B=∠ODB在Rt△ABC中,∠C=90°-∠B∵∠ODE=90°∴∴∠C=∠EDC∴ED=EC∴AE=EC∴OE是△ABC的中位线∴BC=2OE7例9.如图8,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的一段弧。点E是边AD上的任意一点(点E与点A、D不重合),过E作所在圆的切线,交边DC于点F,G为切点。当∠DEF=45°时,求证点G为线段EF的中点;图8解:由∠DEF=45°,得,∴∠DFE=∠DEF∴DE=DF又∵AD=DC∴AE=FC因为AB是圆B的半径,AD⊥AB,所以AD切圆B于点A;同理,CD切圆B于点C。又因为EF切圆B于点G,所以AE=EG,FC=FG。因此EG=FG,即点G为线段EF的中点。【模拟试题】(答题时间:40分钟)一、选择题1.已知:PA、PB切⊙O于点A、B,连结AB,若AB=8,弦AB的弦心距3,则PA=()A.B.C.5D.82.下列图形一定有内切圆的是()A.平行四边形B.矩形C.菱形D.梯形3.已知:如图1直线MN与⊙O相切于C,AB为直径,∠CAB=40°,则∠MCA的度数()图1A.50°B.40°C.60°D.55°84.圆内两弦相交,一弦长8cm且被交点平分,另一弦被交点分为1:4,则另一弦长为()A.8cmB.10cmC.12cmD.16cm5.在△ABC中,D是BC边上的点,AD,BD=3cm,DC=4cm,如果E是AD的延长线与△ABC的外接圆的交点,那么DE长等于()A.B.C.D.6.PT切⊙O于T,CT为直径,D为OC上一点,直线PD交⊙O于B和A,B在线段PD上,若CD=2,AD=3,BD=4,则PB等于()A.20B.10C.5D.二、填空题7.AB、CD是⊙O切线,AB∥CD,EF是⊙O的切线,它和AB、CD分别交于E、F,则∠EOF=_____________度。8.已知:⊙O和不在⊙O上的一点P,过P的直线交⊙O于A、B两点,若PA·PB=24,OP=5,则⊙O的半径长为_____________。9.若PA为⊙O的切线,A为切点,PBC割线交⊙O于B、C,若BC=20,,则PC的长为_____________。10.正△ABC内接于⊙O,M、N分别为AB、AC中点,延长MN交⊙O于点D,连结BD交AC于P,则_____________。三、解答题11.如图2,△ABC中,AC=2cm,周长为8cm,F、K、N是△ABC与内切圆的切点,DE切⊙O于点M,且DE∥AC,求DE的长。图2912.如图3,已知P为⊙O的直径AB延长线上一点,PC切⊙O于C,CD⊥AB于D,求证:CB平分∠DCP。图313.如图4,已知AD为⊙O的直径,AB是⊙O的切线,过B的割线BMN交AD的延长线于C,且BM=MN=NC,若AB,求⊙O的半径。图410【试题答案】一、选择题1.A2.C3.A4.B5.B6.A二、填空题7.908.19.3010.三、解答题:11.由切线长定理得△BDE周长为4,由△BDE∽△BAC,得DE=1cm12.证明:连结AC,则AC⊥CB∵CD⊥AB,∴△ACB∽△CDB,∴∠A=∠1∵PC为⊙O的切线,∴∠A=∠2,又∠1=∠2,∴BC平分∠DCP13.设BM=MN=NC=xcm又∵∴又∵OA是过切点A的半径,∴OA⊥AB即AC⊥AB在Rt△ABC中,由勾股定理,得,由割线定理:,又∵∴∴半径为。
本文标题:切线长定理、弦切角定理、切割线定理、相交弦定理
链接地址:https://www.777doc.com/doc-1362258 .html