您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 重力势能和机械能守恒定律的典型例题
“重力势能和机械能守恒定律”的典型例题【例1】如图所示,桌面距地面0.8m,一物体质量为2kg,放在距桌面0.4m的支架上.(1)以地面为零势能位置,计算物体具有的势能,并计算物体由支架下落到桌面过程中,势能减少多少?(2)以桌面为零势能位置时,计算物体具有的势能,并计算物体由支架下落到桌面过程中势能减少多少?【分析】根据物体相对零势能位置的高度,直接应用公式计算即得.【解】(1)以地面为零势能位置,物体的高度h1=1.2m,因而物体的重力势能:Ep1=mgh1=2×9.8×1.2J=23.52J物体落至桌面时重力势能:Ep2=mgh2=2×9.8×0.8J=15.68J物体重力势能的减少量:△Ep=Ep1-Ep2=23.52J-15.68J=7.84J而物体的重力势能:物体落至桌面时,重力势能的减少量【说明】通过上面的计算,可以看出,物体的重力势能的大小是相对的,其数值与零势能位置的选择有.而重力势能的变化是绝对的,它与零势能位置的选择无关,其变化值是与重力对物体做功的多少有关.当物体从支架落到桌面时重力做功:【例2】质量为2kg的物体自高为100m处以5m/s的速度竖直落下,不计空气阻力,下落2s,物体动能增加多少?重力势能减少多少?以地面为重力势能零位置,此时物体的机械能为多少?(g取10m/s2)【分析】物体下落时,只受重力作用,其加速度a=g,由运动学公式算出2s末的速度和2s内下落高度,即可由定义式算出动能和势能.【解】物体下落至2s末时的速度为:2s内物体增加的动能:2s内下落的高度为:重力势能的减少量:此时物体离地面的高度为:h′=H-h=(100-30)m=70m以地面为零势能位置时,物体的机械能为:【说明】抛出后,由于物体只受重力作用,整个运动过程中只有重力做功,物体的机械能守恒.刚抛出时,物体的机械能为:在下落过程中,重力势能的减少量恰等于动能的增加量,即△Ek=△Ep【例3】质量为1.0kg的物体,自空中落下,以8.0m/s2的加速度经A点到达B点,A、B相距0.75m.若物体在B点时的动能为8.0J,那么通过AB的过程中物体动能的增加量为多少?物体克服阻力做多少功?(取g=10m/s2)【分析】由于下落的加速度a<g,在下落时一定受到阻力,根据牛顿第二定律,可算出阻力,于是即可得克服阻力的功.已知物体在B点的动能,可算出在B点的速度,结合运动学公式算出A点的速度后,即可算出动能的增量.【解】设下落中物体受到的阻力为f,由mg-f=ma得f=mg-ma=1.0(10-8)N=2N物体克服阻力做功:物体从A落到B的过程中,动能的增加量为:△Ep=EkB-EkA=8.0J-2.0J=6.0J【说明】物体从A落到B的过程中,势能减少:△Ep=mgs=1×10×0.75J=7.5J它大于物体动能的增加,可见其机械能不守恒.这是由于存在阻力的缘故.势能的减少与动能增加量之差恰等于物体克服阻力做的功,即△Ep-△Ek=Wf这也就是从A到B的过程中所减少的机械能.【例4】如图所示,光滑圆管形轨道AB部分平直,BC部分是处于竖直平面内半径为R的半圆,圆管截面半径r《R,有一质量m,半径比r略小的光滑小球以水平初速v0射入圆管,(1)若要小球能从C端出来,初速v0多大?(2)在小球从C端出来的瞬间,对管壁压力有哪几种典型情况,初速v0各应满足什么条件?【分析】小球在管内运动过程中,只有重力做功,机械能守恒,要求小球能从C端射出,小球运动到C点的速度vc>0.根据机械能守恒定律即可算出初速v0.小球从C端射出时可能有三种典型情况:①刚好对管壁无压力;②对下管壁有压力;③对上管壁有压力.同理由机械能守恒可确定需满足的条件.【解】(1)小球从A端射入后,如果刚好能到达管顶,则vc=0,由机械能守恒因此,要求小球能从C端出来,必须使vc>0,所以入射速度应满足条件(2)小球从C端出来的瞬间,可以有三种典型情况:①刚好对管壁无压力,此时需满足条件联立得入射速度②对下管壁有压力,此时相应的入射速度为③对上管壁有压力,相应的入射速度为【例5】如图所示,劲度系数k1的轻质弹簧两端分别与质量为m1、m2的物块1、2栓接,劲度系数为k2的轻质弹簧上端与物块2栓接,下端压在桌面(不栓接),整个系统处于平衡状态.现施力将物块1缓慢竖直上提,直到下面那个弹簧的下端刚脱离桌面.在此过程中,物块2的重力势能增加了______,物块1的重力势能增加了________.【分析】设原来两弹簧压缩量分别为x1和x2,由物体的力平衡知当施力将物块1缓慢上提至下面弹簧刚脱离桌面时,表示下面的弹簧已恢复原长,物块2升高的高度h2=x2,所以在此过程中,物块2的重力势能增加此时,上面的弹簧受到拉伸,设其伸长量为x'1,由物块2的力平衡条件知,则物块1在这过程中升高的高度为所以,物块1的重力势能增加【例6】关于机械能是否守恒的叙述,正确的是[]A.作匀速直线运动的物体的机械能一定守恒B.作匀变速运动的物体机械能可能守恒C.外力对物体做功为零时,机械能一定守恒D.只有重力对物体做功,物体机械能一定守恒【分析】机械能守恒的条件是除重力对物体做功外,没有其它外力对物体做功,或其它外力对物体做功的代数和等于零.当物体作匀速直线运动时,除重力对物体做功外,可能还有其他外力做功.如降落伞在空中匀速下降时,既有重力做功,又有阻力做功,机械能不守恒.物体作匀变速运动时,可能只有重力对物体做功,如自由落体运动,此时物体的机械能守恒.因物体所受的外力,指的是包括重力在内的所有外力,当外力对物体做功为零时,可能是处于有介质阻力的状态,如匀速下降的降落伞,所以机械能不一定守恒.【答】B,D.【例7】某人以v0=4m/s的初速度,抛出一个质量为m的小球,测得小球落地时的速度大小为8m/s,则小球刚抛出时离开地面的高度为多少?取g=10m/s2.空气阻力不计.【分析】小球从抛出到落地过程中,不受阻力,只有重力做功,由小球的机械能守恒即可算出离地高度.【解答】设小球抛出时的高度为h,落地速度为vt,取抛出和落地为始、末两状态,以地面为零势能位置,由机械能守恒定律得:出结果,尽管答案相同,但是不正确的.这里的小球不一定作直线运动,必须根据机械能守恒求解.【例8】如图所示,以速度v0=12m/s沿光滑地面滑行的小球,上升到顶部水平的跳板上后由跳板飞出,当跳板高度h多大时,小球飞行的距离s最大?这个距离是多少?(g=10m/s2)【分析】小球上滑到跳板顶端的过程中,只有重力做功,机械能守恒.从跳板顶飞出,小球作平抛运动.【解】设小球从跳板顶飞出的速度为v,由机械能守恒(取底部为势能的参考平面)得小球从顶端飞出后作平抛运动,其水平位移为为了找出使水平位移s最大的条件,对上式作变换得可见,当满足条件小球飞出后的水平距离最大,其值为【例9】图中圆弧轨道AB是在竖直平面内的1/4圆周,在B点,轨道的切线是水平的.一质点自A点从静止开始下滑,不计滑块与轨道间的摩擦和空气阻力,则在质点刚要到达B点时的加速度大小和刚滑过B点时的加速度大小分别为()A.0,gB.g,gC.2g,gD.2g,2g【分析】质点从A到B的下滑过程中,只有重力做功,机械能守恒.取过B点的水平面为零势能面,设轨道半径为R,则有质点从A到B是作变速圆周运动,当它刚到达B点瞬间的加速度为联立(1),(2)两式得质点刚滑过B点,仅受重力作用,其加速度大小为【答】C.【说明】必须注意,物体的加速度跟所受外力是一个瞬时关系,一旦外力变化,加速度随即变化.图中质点刚到达B点时,受到轨道向上的弹力和竖直向下的重力作用,产生的加速度指向过B点竖直向上的方向,即指向圆心.刚滑过B点,轨道支持力为零,仅受重力作用,产生的加速度竖直向下.物体的速度则由于惯性,力图保持不变,图中质点在刚到达B!iedtxx(`stylebkzd',`1107P04.htm')【例10】如图1所示,ABC和AD是两上高度相等的光滑斜面,ABC由倾角不同的两部分组成,且AB+BC=AD,两个相同的小球a、b从A点分别沿两侧斜面由静止滑下,不计转折处的能量损失,则滑到底部的先后次序是[]]A.a球先到B.b球先到C.两球同时到达D.无法判断【分析】小球沿两斜面下滑过程中,都只有小球的重力做功,机械能守恒,因此,a、b两球滑到底端的速度大小一定相等,即vC=vD.在AD斜面上取AB′=AB(图2),由于AB部分比AB′部分陡些,小球滑到B点的速度必大于滑到B′点的速度,即vB>vB′.因此,两球在AB与AB′段、BC与B′D段上的平均速度的大小必然是由于对应的斜面长度AB=AB′,BC=B′D.所以通过它们的时间长短必然是tAB<tAB′,tBC<tB′D.也就是说,沿ABC斜面的小球先滑到底部.【答】A.【说明】本题还可以画出v-t图作出更简捷的判断.如图3所示,为沿ABC和AD下滑小球a、b的v-t图.由于AB+BC=AD,则图线下方与t轴间的面积应相等,也就是图中划有斜线的两部分面积相等,显然,两球运动时间必然是ta<tb.图3【例11】如图1,一个质量为m的小球拴在全长L的细线上做成一个单摆,把小球从平衡位置O拉至A,使细线与竖直方向成θ角,然后轻轻释放.若在悬点O′的正下方有一颗钉子P,试讨论,钉子在何处时,(1)可使小球绕钉来回摆动;(2)可使小球绕钉做圆周运动.【分析】小球摆动过程中,只有小球的重力做功.当不考虑细线碰钉时的能量损失时,无论小球绕钉来回摆动,或绕钉做圆周运动,小球的机械能都守恒.【解】(1)小球绕钉来回摆动时,只能摆到跟开始位置A等高的地方,因此,钉子P的位置范围只能在过A点的水平线与竖直线OO′的交点上方(图2),即钉子离悬点O′的距离h应满足条件0≤h≤Lcosθ.(2)设钉子在位置P′时刚好使小球能绕钉做圆周运动,圆半径R=P′O,设小球在最高点C的速度为vc,并规定最低处O为重力势能的零位置(图3),由A、C两位置时的机械能守恒EA=EC,即又因为刚好能越过C点做圆运动,此时绳中的张力为零,由重力提供向心力,即所以钉子P′离悬点O′的距离如果钉子位置从P′处继续下移,则小球将以更大的速度越过圆周的最高点,此时可由绳子的张力补充在最高点时所需的向心力,仍能绕钉子做圆周运动.所以,能绕钉做圆运动时钉子离悬点的距离h′应满足条件【说明】由本题的解答可知,位置P是小球能绕钉来回摆动的最纸位置;位置P′是小球能绕钉做圆周运动的最高位置.如钉子在PP′之间,则悬线碰钉后,先绕钉做圆运动,然后将在某一位置上转化为斜抛运动.【例12】一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的半径大得多).在圆管中有两个直径比细管内径略小的小球(可视为质点).A球的质量为m1,B球的质量为m2.它们沿环形圆管顺时针运动,经过最低点时的速度都为v0设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1,m2,R与v0应满足的关系式是______.【分析】A球运动到最低点时,由外壁对它产生的弹力NA和A球重力m1g的合力作为向心力,即A球对外壁产生的压力NA′大小等于NA,方向沿半径背离圆心(图1).要求对圆管的合力为零,B球在最高点时也必须对外壁(不可能是内壁)产生一个等量的压力NB′.因此,B球在最高点有向外壁挤压的作用,由外壁对它产生的弹力NB和球重m2g的合力作为向心力(图2).设B球在最高点的速度为vB,据向心力公式和机械能守恒有根据题意NA′=NB′,即要求【例13】如图所示,半径为r,质量不计的圆盘盘面与地面相垂直,圆心处有一个垂直盘面的光滑水平固定轴O,在盘的最右边缘固定有一个质量为m的小球A,在O点的正下方离O点r/2处固定一个质量也为m的小球B.放开盘让其自由转动,问:(1)当A球转到最低点时,两小球的重力势能之和减少了多少?(2)A球转到最低点时的线速度是多少?(3)在转动过程中半径OA向左偏离竖直方向的最大角度是多少?【分析】两小球势能之和的减少,可选取任意参考平面(零势能位置)进行计算.由于圆盘转
本文标题:重力势能和机械能守恒定律的典型例题
链接地址:https://www.777doc.com/doc-136659 .html