您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 电气安装工程 > 重型燃气轮机燃烧室过渡段气动造型设计及性能分析-吴晶峰
3317Vol.33No.17Jun.15,2013902013615ProceedingsoftheCSEE©2013Chin.Soc.forElec.Eng.0258-8013(2013)17-0090-08TK473A470·30(100084)InvestigationofTransitionPieceStructureDesignandAerodynamicPerformanceinHeavyDutyGasTurbineCombustorsWUJingfeng,JIANGHongde(DepartmentofThermalEngineering,TsinghuaUniversity,HaidianDistrict,Beijing100084,China)ABSTRACT:Adesigncodewasdevelopedaimingatfacilitatingthe3-Dgeometricmodelingprocessofatransitionpiece(TP)forcan-typeheavydutygasturbinecombustors.ThreedesignparameterswereintroducedtofullydefinethespatialprofileoftheTP.Thefirstparameterwasappliedtocontrolthecrosssectiontransitionfromcircleinlettoannulus-sectoroutlet,thesecondparameterwasusedtodefinethecenterlineprofile,andthelastonewasusedtocontrolthegradientofeachsection.ThiscodehasbeenprovedbeingabletoneatlyandeffectivelyreproducetheTPofanF-Classcombustorandothershapesoftransitionpieces.Fordemonstrationpurpose,twosortsoftransitionpiecesweredesignedbythiscode,andsimulationswereconductedcombinedwiththesamegascombustionliner.TheresultsindicatethatthedifferenceoftheTPhasminorinfluenceontheflowofcombustorliner.Theflowofthetwocasesisreasonable,withoutillogicaltotalpressureloss.ItisconcludedthatthedesignmethodisfeasibleandnumericalsimulationprovidestheguidanceindesigningofTPforheavydutygasturbinecombustors.KEYWORDS:gasturbine;combustor;transitionpiece;3-Dmodeling;numericalsimulation3F2021[1]2073~2273K[2-5][6][7]GEEF[8-10]DOI:10.13334/j.0258-8013.pcsee.2013.17.0131791[11-12][13][14]J.Alfaro-Ayala[15]GAMBITMuñoz[16]CFDJ.Alfaro-Ayala()211281N2P(xin,yin,zin)3Rcircle4q(xout,yout)5r16r27r1b8r2b1RcircleYXZpqr1br2br2r11Fig.1DefinitionofTPParameters31f12f23f3f1f2f3392332f1(1f1)f22Fig.2Modelingfunction8322.111Tab.1Choiceofgeometryparameters1N[6,22]2(xin,yin,zin)/mzin(0.5,2.0)3Rcircle/m(0.06,0.4)4(xout,yout)/m—5r1/m(0.5,2.0)6r2/m(0.5,2.0)7r1b/m(0.01,0.1)8r2b/m(0.01,0.1)31f12f23f332.2FN6(xin,yin,zin)(0,0,1.2536)Rcircle0.25m(xout,yout)(0.6255,0)r11.0678mr20.9322mr1b0.0374mr2b0.0373m33f16543124.385420.9828.34814.1733.72240.31421.0fxxxxxxf26543224.03055.25643.81376.02820.65850.66911.0fxxxxxxf3xx(a)f1f10.00.00.20.41.00.60.40.81.00.80.20.6x(b)f2f20.00.00.20.41.00.60.40.81.00.80.20.61793x(c)f3500.095650.40.81.0800.20.63Fig.3Modelingfunction4F4(a)F(b)YXZXYZYXZ4FFig.4ReverseofoneF-ClasscombustorTP33.1()[17-18][19]f1f2f3222Tab.2TPparameters1N142(xin,yin,zin)/m(0,0,1.4427)3Rcircle/m0.179854(xout,yout)/m(0.7,0)5r1/m1.201756r2/m0.981237r1b/m0.042068r2b/m0.049062512(a)1YXZ(b)2YXZ52Fig.5TwodifferenttypesofcombustorTP2STAR-CCM+23.2626(a)(b)127129433(a)1(b)26Fig.6MiddlesectionofCFDgridsformodeledcombustor-1-27Fig.7CFDboundaries4905031790490RealizableK-epsilonSIMPLE26kg/s628K10%1276695Pa23.322341—431Tab.3Resultofcombustor11/(kg/s)10.2710.977003.93720.2760.978007.03830.2710.977004.99340.2900.979009.552TP0.073TP0.0770.9998625.83042Tab.4Resultofcombustor22/(kg/s)10.26700.976003.88220.27300.980006.96730.26800.979004.94540.28500.985009.376TP0.0726TP0.07550.9996925.8308234129(a)1/106134.24392900.0098326.00196520.00294710.00(b)2/106157.83407400.00101980.00203800.00305620.008Fig.8DistributionofManumber1795(a)1/K609.83628.88613.64621.26625.07617.45(b)2/K608.45628.95612.55620.75624.85616.659Fig.9Distributionofstatictemperature1021(a)1/(m/s)0.000194.52092.259145.89048.629(b)2/(m/s)0.000201.50100.75151.1250.37410Fig.10Velocitydistribution21112114(a)/1064488.6140000.038366.072244.0106120.00.120.10.0580.0720.045(b)/MPa1.12551.13661.12821.13101.13381.1331.1311.131.136111Fig.11DistributionofManumberandtotalpressureattheoutletsectionofcombustormodel11223420.999860.99969289633(a)1/MPa1.06491.32231.12921.19361.2579(b)2/MPa1.07181.31481.13251.19331.254012Fig.12Distributionoftotalpressure2[20]42[1][M]2007169-225LinGongshuYangDaogangThepresentheavy-dutyindustryengine[M]BeiJingChinaMachinePress2007169-225(inChinese)[2]AyalaAJMuñozGAZaleta-AguilarAetalThermalandfluiddynamicanalysisofthegasturbinetransitionpiece[C]//ProceedingoftheASMETurboExpoPowerforLandSeaandAirOrlandoASME20091387-1396[3]AnBaitaoLiuJianjunJiangHongdeNumericalinvestigationonunsteadyeffectsofhotstreakonflowandheattransferinaturbinestage[C]//ProceedingoftheASMETurboExpoPowerforLandSeaandAirBerlinASME20081735-1746[4]YanXiongLuchengJZhedianZetalThree-dimensionalCFDanalysisofagasturbinecombustorformedium/lowheatingvaluesyngasfuel[C]//ProceedingsofASMETurboExpoPowerforLandSeaandAirBerlinASME20081769-1778[5]ArnalMPrechtCSprunkTetalAnalysisofavirtualprototypefirst-stagerotorbladeusingintegratedcomputer-baseddesigntools[C]//8thBiennialASMEConferenceonEngineeringSystemDesignandAnalysisTorinoASME2006215-224[6]LefebvreABallalDGasTurbinecombustion[M]BocaRatonCRCPress2010315-356[7][D]2011YuZhengleiNumericalsimulationofflowintransitionpieceofgasturbinecombustor[D]JiLinJilinUniversity2011(inChinese)[8]ThomasLLSimosDWPopovicPetalE-classDLNTechnologyadvancementsDLN1+[C]//ASMETurboExpoTurbineTe
本文标题:重型燃气轮机燃烧室过渡段气动造型设计及性能分析-吴晶峰
链接地址:https://www.777doc.com/doc-1373522 .html