您好,欢迎访问三七文档
1人教B版必修2《立体几何初步》第一章教材分析与建议一.《课程标准》关于《立体几何初步》的表述及教学要求1、《普通高中数学课程标准》说明:《普通高中数学课程标准》指出:几何学是研究现实世界中物体的形状、大小与位置关系的数学学科。人们通常采用直观感知、操作确认、思辨论证、度量计算等方法认识和探索几何图形及其性质。三维空间是人类生存的现实空间,认识空间图形,培养和发展学生的空间想像能力、推理论证能力、运用图形语言进行交流的能力以及几何直观能力,是高中阶段数学必修系列课程的基本要求。在立体几何初步部分,学生将先从对空间几何体的整体观察入手,认识空间图形;再以长方体为载体,直观认识和理解空间点、线、面的位置关系;能用数学语言表述有关平行、垂直的性质与判定,并对某些结论进行论证。学生还将了解一些简单几何体的表面积与体积的计算方法。2、教学要求:空间几何体(1)利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构。(2)能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如纸板)制作模型,会用斜二侧画法画出它们的直观图。(3)通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式。(4)了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式)。点、线、面之间的位置关系(1)借助长方体模型,在直观认识和理解空间点、线、面的位置关系的基础上,抽象出空间线、面位置关系的定义,并了解如下可作为推理依据的公理和定理:◆平面的基本性质1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。◆平面的基本性质2:过不在一条直线上的三点,有且只有一个平面。◆平面的基本性质3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。◆平面的基本性质4:平行于同一条直线的两条直线平行。◆定理:空间中如果两个角的两条边分别对应平行,那么这两个角相等或互补。(2)以立体几何的上述定义、公理和定理为出发点,通过直观感知、操作确认、思辩论证,认识和理解空间中线面平行、垂直的有关性质与判定。通过直观感知、操作确认,归纳出以下判定定理:◆平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。◆一个平面内的两条相交直线与另一个平面平行,则这两个平面平行。◆一条直线与一个平面内的两条相交直线垂直,则该直线与此平面垂直。◆一个平面过另一个平面的垂直线,则两个平面垂直。通过直观感知,操作确认,归纳出以下性质定理,并加以证明。◆一条直线与一个平面平行,则过该直线的任一个平面与此平面的交线与该直线平行。◆两个平面平行,则任意一个平面与这两个平面相交所得的交线相互平行。◆垂直于同一个平面的两条直线平行。◆两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。2(3)能运用已获得的结论证明一些空间位置关系的简单命题。《标准》与原《大纲》比较,在要求上的主要变化有⑴对于“空间几何体”:《教学大纲》要求:了解概念,掌握性质;《课程标准》则要求:认识柱、锥、台、球及简单组合体的结构特征。《课程标准》把重点放在了空间想像能力上,对概念、性质则降低了要求。⑵对于“点、线、面之间的位置关系”:《课程标准》把重点放在了定性研究(平行和垂直)上,定量研究(角和距离)在必修中不作要求(移到选修中),对线、面垂直的判定定理不证明,移到空间向量中再证。分段设计,分层递进。⑶对知识发生的过程提出了较高的要求:多处使用了“观察”、“认识”、“画出”、“直观感知、操作确认,归纳”等情感、态度与价值要求的行为动词。对空间几何体的要求是直观感知;对线、面关系则要求操作确认、思辨论证;对判定定理的要求是操作确认、合情推理;对性质定理则要求思辨论证、逻辑推理。(4)不要求用反证法证明简单的问题。二.新老教材在教学内容、教学时间方面的对比新课标过渡教材A过渡教材B老教材空间几何体空间几何体的结构2棱柱4空间向量\运算6多面体29空间几何体的三视图和直观图2棱锥4空间向量坐标运算3旋转体空间几何体的表面积与体积2阅读及研究性3棱柱棱锥5多面体和旋转体的体积实习作业和小结2球4阅读及研究性3球3点、直线平面之间的位置关系空间点、直线、平面之间的位置关系3平面3平面性质3平面28空间直线5空间平行直线与异面直线2空间两条直线平面平行的判定及其性质3线面平行的判定和性质3线面平行面面平行2空间直线和平面直线、平面垂直的判定及其性质3线面垂直的判定和性质4线面垂直4空间两个平面实习作业和小结1面面平行的判定和性质3线面的角二面角3面面垂直的判定和性质3距离2小结与复习3小结与复习3合计183939573选修文科:推理与证明10理科:空间向量与立体几何12推理与证明8三、新课程教材和旧教材处理的变化1、新教材立体几何初步的编写意图内容与结构的变化从整体到局部、具体到抽象的原则——遵循认知规律、重在提高空间想象能力,通过直观感知、操作确认、思辨论证、度量计算等方法,认识和探索空间几何图形及其性质。传统处理方式:点、线、面柱、锥、台、球新教材处理方式:柱、锥、台、球点、线、面计算2、内容设计分析:直观感知、操作确认、思辩论证、度量计算空间几何体点、线、面位置关系表面积、体积(1)空间几何体——直观感知这部分内容的展开,首先借助于丰富的实物模型或运用计算机软件所呈现的空间几何体,通过对这些空间几何体的整体观察,帮助学生认识其结构特征,运用这些特征描述现实生活中的一些简单物体的结构,巩固和提高义务教育阶段有关三视图的学习和理解,帮助学生运用平行投影与中心投影,进一步掌握在平面上表示空间图形的方法和技能。平移——棱柱、锥、台旋转——圆柱、锥、台、球投影——视图——直观图运动变化的观点:展现数学的统一美、和谐美;发展空间想象能力(几何体的构成)。(2)点、线、面之间的关系——操作确认、思辨论证以长方体为载体,直观认识和理解体会空间的点、线、面之间的位置关系,抽象出空间线、面的位置关系的定义,用数学语言表述有关平行、垂直的性质与判定,并了解一些可以作为推理依据的公理和定理。对性质定理加以逻辑证明,至于判定定理,在选修系列2中,用向量的方法加以严格的证明。要求学生能运用已获得的结论证明一些空间位置关系的简单命题。长方体——微型三维空间(载体)判定——操作确认——合情推理性质——思辩论证——逻辑推理借助三维空间的基本模型(长方体);重视合情推理与逻辑推理的结合,注意适度形式化。帮助学生完善思维结构,发展空间想象能力。柱、锥、台、球的表面积与体积——度量计算4从局部回到整体,通过计算度量对空间几何体的表面积和体积进行定量的研究。几点说明棱柱、棱锥、棱台的描述——平移投影→视图→直观图研究的载体:长方体•空间的基本模型就是长方体•认识清楚了其上的点线、线线、线面,基本上可以解决空间中一些基本问题。•长方体作为模型,贯穿于整个的教学之中。•判定定理和性质定理的不同要求计算要求的降低(线线、线面、面面角的计算,距离的计算不做要关于反证法关于直线与面垂直的性质定理的证明,教材采用反证法,学生理解上会有一定的困难,教学时注意引导学生理解反证法的反设、归谬,进而得出正确的结论。证明中用到“如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于这个平面”和“过一点有且只有一条直线与已知平面垂直”的事实。◆重视类比,合情推理空间与平面的类比,比如:平面基本性质4◆强调几何直观,合情推理与逻辑推理并重,适当渗透公理化思想。(3)螺旋上升,分层递进,逐步到位。在内容呈现上,通过直观感知、操作确认,获得几何图形的性质,并通过简单的推理发现、论证一些几何性质。教材在内容的设计上不是以论证几何为主线展开几何内容,而是先使学生在特殊情境下通过直观感知、操作确认,对空间的点、线、面之间的位置关系有一定的感性认识,在此基础上进一步通过直观感知、操作确认,归纳出有关空间图形位置关系的一些判定定理和性质定理,并对性质定理加以逻辑证明。(4)教学内容增减:删除(或在选修课内体现的):1、异面直线所成的角的计算。2、直线与平面所成角的计算。3、三垂线定理及其逆定理。4、二面角及其平面角的计算。5、多面体及欧拉公式。6、原教材中有4个公理,4个推论,14个定理(都需证明)(不包含以例题出现的定理)。新教材中有4个公理,9个定理(4个需证明)。增加:1、简单空间图形的三视图;专设“空间几何体的三视图和直观图”这一节,重点在于培养空间想像能力。2、台体的表面积和体积等内容。四、关于《立体几何初步》的教学指导建议第一章空间几何体(10课时)1.1空间几何体的结构(5课时)基本要求发展要求说明1、理解柱、锥、台、球的结构特征。2、1、了解和正方体、1、柱、锥、台、球5了解棱柱、棱锥、棱台的底面、侧棱、侧面、顶点的意义。3、了解圆柱、圆锥、圆台的底面、母线、侧面、轴的意义。4、了解简单组合体的结构特征。球有关的简单组合体。2、能根据条件判断几何体的类型。的结构特征只须通过实例概括,不必证明。2、空间几何体的性质不必深入挖掘。重点:让学生感受大量空间实物及模型,概括出柱、锥、台、球的结构特征。难点:如何让学生概括柱、锥、台、球的结构特征。教学建议:新课标在几何数学中强调几何学习的直观性,强调实物、模型对几何学习的作用。因此对柱、锥、台、球的学习需要从实物图形的感知出发,抽象出其本质特征,来建立多面体、旋转体的概念,进一步研究它们的结构和分类。课外可让学生动手做一做,更直接的感受空间几何图形的特征。如建议学生用纸板或游戏棒或细铁丝(作骨架)做出下列几何体的模型:⑴正方体;⑵长方体;⑶三棱锥;⑷四棱锥;⑸三棱台。学生通过动手做,亲身体验柱、锥、台的结构特征,必会帮助学生逐步形成空间想像能力。1.2空间几何体的三视图和直观图(2课时)基本要求发展要求说明1、了解中心投影和平行投影的意义。2、理解三视图画法的规则,能画简单几何体的三视图。3、掌握斜二测画法,能作简单几何体的直观图。4、能识别三视图所表示的空间几何体。理解三视图和直观图的联系,并能进行转化。1、对于画三视图和直观图的几何体,只要求前一节介绍的柱、锥、台、球及它们的一些简单组合,不必研究较复杂的几何体。重点:让学生画出组合体的三视图,用斜二测画法画空间几何体的直观图。难点:识别三视图所表示的空间几何体。教学建议:1、先让学生明确画好空间图形的必要性。2、向学生介绍空间图形在平行投影和中心投影下的表现形式,(三视图是正投影的主要应用,斜二侧画法是斜投影的应用);进而理解画三视图和直观图的基本要求,掌握画三视图和直观图的基本技能,丰富学生的空间想象能力。在三视图的教学中要通过学生的亲身体验来完成,教师应该充分利用“问题探究”的形式,让学生在探究中学会三视图的画法,体会三视图的作用。为突破本节的难点“识别三视图所表示的空间几何体”,先举例分析根据三视图找对应物体,再由简单图形入手分析识别方法,所选的例题不必太难,注意例题的梯度性。用斜二测画法画直观图,关键是掌握画水平放置的平面图形,它是画空间几何体直观图的基础。而水平放置的平面图形的画法可以归结为确定点的位置的画法。在平面上确定点的位置我们可以借助直角坐标系来完成,因此画水平放置的直角坐标系是学生首先要掌握的方法。通过例题的教学使学生明确画直观图的基本要求。教学中可设计用斜二侧画法画水平放置的平面图形的直观图及几何体的三视图的问题,让学生动手去画。让学生用所学的投影知识,解答下面的问题:⑴画水平放置的正六边形的直观图;⑵画一个五棱柱,其中底面五边形为正五边形,俯视图也是正五边形;6⑶已知某个简单几何体的三视图,用斜二侧画法画出它的直观图。1.3空间几何体的表面积与体积(3课时)基本要求发展要求说明1、了解表面与展开图的关系;2、了解柱、锥、台、球表面积的计算公式,并能计算一些简单组合体的表面积;3、了解柱、锥、台、球的体积公式,并能计算一些简单组合体的体积
本文标题:立体几何新教材分析
链接地址:https://www.777doc.com/doc-1416783 .html