您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019年浙江省金华市中考数学试题(解析版-含答案)
浙江省金华市2019年中考数学试卷一、选择题(本题有10小题,每小题3分,共30分)1.数4的相反数是()A.B.-4C.D.42.计算a6÷a3,正确的结果是()A.2B.3aC.a2D.a33.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.84.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃-2℃-3℃A.星期一B.星期二C.星期三D.星期四5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A.B.C.D.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南75°方向5km处7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A.(x-3)2=17B.(x-3)2=14C.(x-6)2=44D.(x-3)2=18.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A.∠BDC=∠αB.BC=m·tanαC.AO=D.BD=9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.-1C.D.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.12.数据3,4,10,7,6的中位数是________.13.当x=1,y=时,代数式x2+2xy+y2的值是________.14.如图,在量角器的圆心O处下挂一铅锤,制作了一个简易测倾仪。量角器的O刻度线AB对准楼顶时,铅垂线对应的读数是50°,则此时观察楼顶的仰角度数是________.15.元朝朱世杰的《算学启蒙》一书记载:“今有良马目行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之,”如图是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是________.16.图2、图3是某公共汽车双开门的俯视示意图,ME,EF,FN是门轴的滑动轨道,∠E=∠F=90°,两门AB,CD的门轴A,B,C,D都在滑动轨道上.两门关闭时(图2),A,D分别在E,F处,门缝忽略不计(即B,C重合);两门同时开启,A,D分别沿E→M,F→N的方向匀速滑动,带动B,C滑动;B到达E时,C恰好到达F,此时两门完全开启。已知AB=50cm,CD=40cm.(1)如图3,当∠ABE=30°时,BC=________cm.(2)在(1)的基础上,当A向M方向继续滑动15cm时,四边形ABCD的面积为________cm2.三、解答题(本题有8小题,共66分)17.计算:|-3|-2tan60°++()-118.解方程组:19.某校根据课程设置要求,开设了数学类拓展性课程。为了解学生最喜欢的课程内容,随机抽取了部分学生进行问卷调查(生人必须且只选其中一项),并将统计结果绘制成如下统计图(不完整),请根据图中信息回答问题。(1)求m,n的值。(2)补全条形统计图。(3)该校共有1200名学生,试估计全校最喜欢“数学史话”的学生人数。20.如图,在7×6的方格中,△ABC的顶点均在格点上,试按要求画出线段EF(E,F均为格点),各画出一条即可。21.如图,在OABC,以O为图心,OA为半径的圆与C相切于点B,与OC相交于点D.(1)求的度数。(2)如图,点E在⊙O上,连结CE与⊙O交于点F。若EF=AB,求∠OCE的度数.22.如图,在平面直角坐标系中,正次边形ABCDEF的对称中心P在反比例函数y=(k>0,x0)的图象上,边CD在x轴上,点B在y轴上,已知CD=2.(1)点A是否在该反比例函数的图象上?请说明理曲。(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标。(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程。23.如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y轴的正半轴上,把正方形OABC的内部及边上,横,纵坐标均为整数的点称为好点,点P为抛物线y=-(x-m)2+m+2的顶点。(1)当m=0时,求该抛物线下方(包括边界)的好点个数。(2)当m=3时,求该抛物线上的好点坐标。(3)若点P在正方形OABC内部,该抛物线下方(包括边界)给好存在8个好点,求m的取值范围,24.如图,在等腰Rt△ABC中,∠ACB=90°,AB=14。点D,E分别在边AB,BC上,将线段ED绕点E按逆时针方向旋转90°得到EF。(1)如图1,若AD=BD,点E与点C重合,AF与DC相交于点O,求证:BD=2DO.(2)已知点G为AF的中点。①如图2,若AD=BD,CE=2,求DG的长。②若AD=6BD,是否存在点E,使得△DEG是直角三角形?若存在,求CE的长;若不存在,试说明理由。答案解析部分一、选择题(本题有10小题,每小题3分,共30分)1.数4的相反数是()A.B.-4C.D.4【答案】B【考点】相反数及有理数的相反数【解答】∵4的相反数是-4.故答案为:B.【分析】反数:数值相同,符号相反的两个数,由此即可得出答案.2.计算a6÷a3,正确的结果是()A.2B.3aC.a2D.a3【答案】D【考点】同底数幂的除法【解答】解:a6÷a3=a6-3=a3故答案为:D.【分析】同底数幂除法:底数不变,指数相减,由此计算即可得出答案.3.若长度分别为a,3,5的三条线段能组成一个三角形,则a的值可以是()A.1B.2C.3D.8【答案】C【考点】三角形三边关系【解答】解:∵三角形三边长分别为:a,3,5,∴a的取值范围为:2<a<8,∴a的所有可能取值为:3,4,5,6,7.故答案为:C.【分析】三角形三边的关系:两边之和大于第三边,两边之差小于第三边,由此得出a的取值范围,从而可得答案.4.某地一周前四天每天的最高气温与最低气温如表,则这四天中温差最大的是()星期一二三四最高气温10℃12℃11℃9℃最低气温3℃0℃-2℃-3℃A.星期一B.星期二C.星期三D.星期四【答案】C【考点】极差、标准差【解答】解:依题可得:星期一:10-3=7(℃),星期二:12-0=12(℃),星期三:11-(-2)=13(℃),星期四:9-(-3)=12(℃),∵7<12<13,∴这四天中温差最大的是星期三.故答案为:C.【分析】根据表中数据分别计算出每天的温差,再比较大小,从而可得出答案.5.一个布袋里装有2个红球,3个黄球和5个白球,除颜色外其它都相同,搅匀后任意摸出一个球,是白球的概率为()A.B.C.D.【答案】A【考点】等可能事件的概率【解答】解:依题可得:布袋中一共有球:2+3+5=10(个),∴搅匀后任意摸出一个球,是白球的概率P=.故答案为:A.【分析】结合题意求得布袋中球的总个数,再根据概率公式即可求得答案.6.如图是雷达屏幕在一次探测中发现的多个目标,其中对目标A的位置表述正确的是()A.在南偏东75°方向处B.在5km处C.在南偏东15°方向5km处D.在南75°方向5km处【答案】D【考点】钟面角、方位角【解答】解:依题可得:90°÷6=15°,∴15°×5=75°,∴目标A的位置为:南偏东75°方向5km处.故答案为:D.【分析】根据题意求出角的度数,再由图中数据和方位角的概念即可得出答案.7.用配方法解方程x2-6x-8=0时,配方结果正确的是()A.(x-3)2=17B.(x-3)2=14C.(x-6)2=44D.(x-3)2=1【答案】A【考点】配方法解一元二次方程【解答】解:∵x2-6x-8=0,∴x2-6x+9=8+9,∴(x-3)2=17.故答案为:A.【分析】根据配方法的原则:①二次项系数需为1,②加上一次项系数一半的平方,再根据完全平方公式即可得出答案.8.如图,矩形ABCD的对角线交于点O,已知AB=m,∠BAC=∠α,则下列结论错误的是()A.∠BDC=∠αB.BC=m·tanαC.AO=D.BD=【答案】C【考点】锐角三角函数的定义【解答】解:A.∵矩形ABCD,∴AB=DC,∠ABC=∠DCB=90°,又∵BC=CB,∴△ABC≌△DCB(SAS),∴∠BDC=∠BAC=α,故正确,A不符合题意;B.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴tanα=,∴BC=AB·tanα=mtanα,故正确,B不符合题意;C.∵矩形ABCD,∴∠ABC=90°,在Rt△ABC中,∵∠BAC=α,AB=m,∴cosα=,∴AC==,∴AO=AC=故错误,C符合题意;D.∵矩形ABCD,∴AC=BD,由C知AC==,∴BD=AC=,故正确,D不符合题意;故答案为:C.【分析】A.由矩形性质和全等三角形判定SAS可得△ABC≌△DCB,根据全等三角形性质可得∠BDC=∠BAC=α,故A正确;B.由矩形性质得∠ABC=90°,在Rt△ABC中,根据正切函数定义可得BC=AB·tanα=mtanα,故正确;C.由矩形性质得∠ABC=90°,在Rt△ABC中,根据余弦函数定义可得AC==,再由AO=AC即可求得AO长,故错误;D.由矩形性质得AC=BD,由C知AC==,从而可得BD长,故正确;9.如图物体由两个圆锥组成,其主视图中,∠A=90°,∠ABC=105°,若上面圆锥的侧面积为1,则下面圆锥的侧面积为()A.2B.C.D.【答案】D【考点】圆锥的计算【解答】解:设BD=2r,∵∠A=90°,∴AB=AD=r,∠ABD=45°,∵上面圆锥的侧面积S=·2πr·r=1,∴r2=,又∵∠ABC=105°,∴∠CBD=60°,又∵CB=CD,∴△CBD是边长为2r的等边三角形,∴下面圆锥的侧面积S=·2πr·2r=2πr2=2π×=.故答案为:D.【分析】设BD=2r,根据勾股定理得AB=AD=r,∠ABD=45°,由圆锥侧面积公式得·2πr·r=1,求得r2=,结合已知条件得∠CBD=60°,根据等边三角形判定得△CBD是边长为2r的等边三角形,由圆锥侧面积公式得下面圆锥的侧面积即可求得答案.10.将一张正方形纸片按如图步骤,通过折叠得到图④,再沿虚线剪去一个角,展开铺平后得到图⑤,其中FM,GN是折痕,若正方形EFGH与五边形MCNGF的面积相等,则的值是()A.B.-1C.D.【答案】A【考点】剪纸问题【解答】解:设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,如图,依题可得:NM=a,FM=GN=,∴NO==,∴GO==,∵正方形EFGH与五边形MCNGF的面积相等,∴x2=+a2,∴a=x,∴==.故答案为:A.【分析】设大正方形边长为a,小正方形边长为x,连结NM,作GO⊥NM于点O,根据题意可得,NM=a,FM=GN=,NO==,根据勾股定理得GO=,由题意建立方程x2=+a2,解之可得a=x,由,将a=x代入即可得出答案.二、填空题(本题有6小题,每小题4分,共24分)11.不等式3x-6≤9的解是________.【答案】x≤5【考点】解一元一次不等式【解答】解:∵3x-6≤9,∴x≤5.故答案为:x≤5.【分析】根据解一元一次不等式步骤解之即可得出答案.12.数据3,4,10,7,6的中位数是________.【答案】6【考点】中位数【解答】解:将这组数据从小到大排列为:3,4,6,7,10,∴这组数据的中位数为:6.故答案为:6.【分析】中位数:将一组数据从小到大排列或从大到小排列,如果是奇数个数,则处于中间的那个数即为中位数;若是偶数个数,则中间两个数的平均数即为中位
本文标题:2019年浙江省金华市中考数学试题(解析版-含答案)
链接地址:https://www.777doc.com/doc-1430357 .html