您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 新北师大九年级数学上册第一章特殊的平行四边形知识点
第一章特殊的平行四边形一、平行四边形1、平行四边形的定义:两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质(1)平行四边形的对边平行且相等。(对边)(2)平行四边形相邻的角互补,对角相等(对角)(3)平行四边形的对角线互相平分。(对角线)(4)平行四边形是中心对称图形,对称中心是对角线的交点。常用点:(1)若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段的中点是对角线的交点,并且这条直线二等分此平行四边形的面积。(2)推论:夹在两条平行线间的平行线段相等。3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形。(对边)(2)定理1:两组对边分别相等的四边形是平行四边形。(对边)(3)定理2:一组对边平行且相等的四边形是平行四边形。(对边)(4)定理3:两组对角分别相等的四边形是平行四边形。(对角)(5)定理4:对角线互相平分的四边形是平行四边形。(对角线)4、两条平行线的距离两条平行线中,一条直线上的任意一点到另一条直线的距离,叫做这两条平行线的距离。注意:平行线间的距离处处相等。5、平行四边形的面积:S平行四边形=底边长×高=ah二、菱形1、菱形的定义:有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等,对边平行。(边)(2)菱形的相邻的角互补,对角相等。(对角)(3)菱形的对角线互相垂直平分,并且每一条对角线平分一组对角。(对角线)(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条,是对角线所在的直线。3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形。(2)定理1:四边都相等的四边形是菱形。(边)(3)定理2:对角线互相垂直的平行四边形是菱形。(对角线)(4)定理3:对角线垂直且平分的四边形是菱形。(对角线)4、菱形的面积:S菱形=底边长×高=两条对角线乘积的一半三、矩形1、矩形的定义:有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1)矩形的对边平行且相等。(对边)(2)矩形的四个角都是直角。(内角)(3)矩形的对角线相等且互相平分。(对角线)(4)矩形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条,是对边中点连线所在的直线。3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形。(2)定理1:有三个角是直角的四边形是矩形。(角)(3)定理2:对角线相等的平行四边形是矩形。(对角线)※推论:直角三角形斜边上的中线等于斜边的一半。4、矩形的面积:S矩形=长×宽=ab五、正方形1、正方形的定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质(1)正方形四条边都相等,对边平行。(边)(2)正方形的四个角都是直角(角)(3)正方形的两条对角线相等,并且互相垂直平分,每一条对角线平分一组对角(对角线)(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条,是对角线所在的直线和对边中点连线所在的直线。3、正方形的判定(1)定义:有一组邻边相等,并且有一个角是直角的平行四边形叫做正方形。(2)定理1:有一组邻边相等的矩形是正方形。(3)定理2:对角线互相垂直的矩形是正方形。(4)定理3:有一个角是直角的菱形是正方形。(5)定理4:对角线相等的菱形是正方形。(6)定理5:对角线垂直且相等的平行四边形是正方形。判定一个四边形是正方形的主要依据是定义,途径有两种:(1)先证它是矩形,再证它是菱形。(2)先证它是菱形,再证它是矩形。4、正方形的面积:设正方形边长为a,对角线长为b,则S正方形=222ba六、有关中点四边形问题的知识点:(1)顺次连接任意四边形的四边中点所得的四边形是平行四边形;(2)顺次连接矩形的四边中点所得的四边形是菱形;(3)顺次连接菱形的四边中点所得的四边形是矩形;(4)顺次连接等腰梯形的四边中点所得的四边形是菱形;(5)顺次连接对角线相等的四边形四边中点所得的四边形是菱形;(6)顺次连接对角线互相垂直的四边形四边中点所得的四边形是矩形;(7)顺次连接对角线互相垂直且相等的四边形四边中点所得的四边形是正方形。平行四边形菱形矩形正方形一组邻边相等一组邻边相等且一个内角为直角(或对角线互相垂直平分)一内角为直角一邻边相等或对角线垂直一个内角为直角(或对角线相等)
本文标题:新北师大九年级数学上册第一章特殊的平行四边形知识点
链接地址:https://www.777doc.com/doc-1443930 .html