您好,欢迎访问三七文档
展开与折叠练习题1、小丽制作了一个如图所示的正方体礼品盒,其对面图案都相同,那么这个正方体的平面展开图可能是()A.B.C.D.2、能把表面依次展开成如图所示的图形的是()A.球体、圆柱、棱柱B.球体、圆锥、棱柱C.圆柱、圆锥、棱锥D.圆柱、球体、棱锥3、如图把左边的图形折叠起来围成一个正方体,应该得到右图中的()A.B.C.D.4、下列平面图形,不能沿虚线折叠成立体图形的是()A.B.C.D.5、如图,把图折叠起来,它会成为下边的正方体()A.B.C.D.6、一个立方体的表面展开图如图所示,将其折叠成立方体后的立体图形是()A.B.C.D.7、下列立体图形中,侧面展开图是扇形的是()A.B.C.D.8、将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的()A.面CDHEB.面BCEFC.面ABFGD.面ADHG9、将如图所示表面带有图案的正方体沿某些棱展开后,得到的图形是()A.B.C.D.10、以下各图均有彼此连接的六个小正方形纸片组成,其中不能折叠成一个正方体的是()A.B.C.D.11、一个几何体的展开图如图所示,这个几何体是()A.三棱柱B.三棱锥C.四棱柱D.四棱锥12、骰子是6个面上分别写有数字1,2,3,4,5,6的小立方体,它任意两对面上所写的两个数字之和为7.将这样相同的几个骰子按照相接触的两个面上的数字的积为6摆成一个几何体,这个几何体的三视图如图所示.已知图中所标注的是部分面上的数字,则“*”所代表的数是()A.2B.4C.5D.613、下列图形中,能通过折叠围成一个三棱柱的是()A.B.C.D.14、把如图中的三棱柱展开,所得到的展开图是()A.B.C.D.15、如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)()A.40×40×70B.70×70×80C.80×80×80D.40×70×8016、下列图形中,是圆锥侧面展开图的是()A.B.C.D.17、下面图形不能围成封闭几何体的是()(A)(B)(C)(D)18、如图,一个正方体纸盒的表面展开图,去���其中一个正方形,可以折成一个无盖的正方体盒子,去掉的这个正方形的编号是___________(只填1个).19、________的表面能展成如图所示的平面图形.20、展开图:几何体名称:_______,_______,_______,_______.21、下图是无盖长方体盒子的表面展开图(重叠部分不计),则盒子的容积为______.22、把边长为lcm的正方体表面展开要剪开_______条棱,展开成的平面图形周长为________cm.23、如图,是一个没有完全剪开的正方体,若再剪开一条棱,则得到的平面展开图可能是下列六种图中的_________.(填写字母)24、如图所示,在等腰三角形ABC中,AB=AC=12cm,∠ABC=30°,那么底边上的高AD=_____cm.25、如图,立方体的六个面上标着连续的整数,若相对的两个面上所标之数的和相等.则这六个数的和为____.26、将一个底面半径为2,高为4的圆柱形纸筒沿一条母线剪开,所得到的侧面展开图形面积为____.27、如图是正方体的展开图,则原正方体相对两个面上的数字之和的最小值的是____.28、将如图所示的正方体的展开图重新折叠成正方体后,和“应”字相对面上的汉字是____.29、如图是正方体的一种平面展开图,它的每个面上都有一个汉字,那么在原正方体的表面上,与汉字“香”相对的面上的汉字是____.30、将正方形纸片先沿对角线对折,再剪成图所示图形,则它展开后是什么图案,请画出来.31、在下图所示的正方体的平面展开图中,确定正方体上的点M、N的位置���32、如图所示的是某几何体的展开图.(1)这个几何体的名称是_______;(2)求这个几何体的体积.(π取3.14)33、如图是某多面体的展开图,请根据要求回答下列问题:(1)如果A在多面体的底部,谁在上面?(2)如果F在前面,谁在后面?(3)如果C在右面,谁在左面?34、两个圆柱的底面半径均为30cm,高均为50cm,将这两个圆柱的侧面展开图粘成一个大的矩形,然后再将它卷成与原来圆柱等高的圆柱的侧面,求所卷成的圆柱的体积.35、对图中的几何体,请你试着画出它的表面展开图;试着画出从正面、左面、上面看到的平面图形.36、如图,正方体的下半部分漆上了黑色,在如图的正方体表面展开图上把漆油漆的部分涂黑(图中涂黑部分是正方体的下底面).37、指出下列平面图形是什么几何体的展开图:
本文标题:展开与折叠练习题
链接地址:https://www.777doc.com/doc-1444234 .html