您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 市场营销 > 套利定价理论与市场的有效性(1)
第七章套利定价理论与市场的有效性清华大学经济管理学院国际金融与贸易系朱宝宪副教授2最早由美国学者斯蒂芬·罗斯于1976年提出,这一理论的结论与CAPM模型一样,也表明证券的风险与收益之间存在着线性关系,证券的风险最大,其收益则越高。但是,套利定价理论的假定与推导过程与CAPM模型很不同,罗斯并没有假定投资者都是厌恶风险的,也没有假定投资者是根据均值-方差的原则行事的。他认为,期望收益与风险之所以存在正比例关系,是因为在市场中已没有套利的机会。传统理论是所有人调整,这里是少数人调整。一、套利定价理论清华大学经济管理学院国际金融与贸易系朱宝宪副教授3①股票的收益率取决于系统因素和非系统因素;②市场中存在大量的不同资产,是完全竞争的;③市场中允许卖空,卖空所得款项归卖空者所有;④投资者偏向获利较多的投资策略。罗斯的分析是从单因素模型开始的,即有:r=E(ri)+biF+eI(7.1)我们假定,系统因素测度的是与宏观经济有关的新信息,它具有零期望值。非系统因素eI也具有零期望值。二、套利定价理论的假定前提清华大学经济管理学院国际金融与贸易系朱宝宪副教授4资产组合充分分散,非系统风险会完全分散掉。假定有一由n种股票按权重组成的资产组合,每一股票的权重为wi,因此有åwi=1,则该资产组合的收益率为rP=E(rP)+bPF+eP(7.2)这里,式中的bP是n种股票的bi的加权平均值,有bP=åwibI;式中的eP是n种股票与F无关的ei的加权平均值,有eP=åwIei。这一投资组合的方差分为系统的和非系统的两部分,有2P=b2P2F+2(eP)(7.3)rp=E(rp)+bpF(7.4)三、充分分散化的资产组合清华大学经济管理学院国际金融与贸易系朱宝宪副教授5如果资产组合不是等权重的,结论仍然成立。假定有一由1000只股票构成的资产组合。我们令第一只股票的头寸为w%,令第二只股票的头寸为2w%,第三只为3w%,……,第一千只股票的头寸为1000w%。有w+2w+…+1000w=1,求解w,有500500w=1,w=0.0002%。那么,1000w=0.2%。这就是说,在这个非等权重的资产组合中权重最大的一只股票的头寸只占全部资产的0.2%,即占全部资产的1%的0.2。我们的结论是,只要资产组合是充分分散化的,无论是不是等权重的,非系统风险都会被分散掉。充分分散化的资产组合(2)清华大学经济管理学院国际金融与贸易系朱宝宪副教授6图中的实线显示在不同的系统风险下,一个bA=1的充分分散化资产组合A的收益情况。资产组合A的期望收益是10%,系统风险为0,由于bA=1,因此资产组合的收益为E(rA)+bAF=10%+1.0×F(7.5)如果系统因素F为3%,那么,资产组合的收益就为10%+3%=13%;如果系统因素F为-3%,那么,资产组合的收益就为10%-3%=7%。四、充分分散化的几何表达清华大学经济管理学院国际金融与贸易系朱宝宪副教授7图上还有一条虚线,它代表另一充分分散化资产组合B的收益。我们假定其收益的期望值为8%,且bB也等于1。那么,A和B是否可以在图中的条件下共存呢?显然不行。因为不论系统因素为多大,A大于B都会导致套利机会的出现。所有的投资者都会愿意买入资产组合A,同时卖空资产组合B,无论系统因素为多大,都可以获得2%的套利毛利润。如果投资者的套利规模为1000万,套利的毛利润就是20万,还没有风险。在套利活动的作用下,两个资产组合的收益差会逐渐消失,相同贝塔值的充分分散化的资产组合的均衡收益是唯一的。一旦不再唯一,就有套利的机会,而套利会使收益差消除。充分分散化的几何表达(2)清华大学经济管理学院国际金融与贸易系朱宝宪副教授8首先,所有充分分散化资产组合的期望收益都是在无风险收益的基础上系统因素的线性函数,如果无风险收益为4%,系统风险为6%。当贝塔值为0.5时,期望收益为7%;当贝塔值为1时,期望收益为10%;任何贝塔值为0.5的组合期望收益都是斜线上同一点,如果不是,就存在套利机会,套利活动会使具有相同贝塔值,充分分散化资产组合的期望收益趋于相同。而所有贝塔值不同的资产组合的期望收益都会在同一条斜线上,一旦出现不在一条线的情况,实际就等于有相同的贝塔值,但期望收益不同,这当然会导致套利。五、不同贝塔值的风险溢价与贝塔成比例清华大学经济管理学院国际金融与贸易系朱宝宪副教授9假定市场资产组合是一个充分分散化的资产组合,其贝塔值为1,由于风险溢价与贝塔值成比例,所以,其期望收益等于无风险收益加上其风险溢价水平。其一般形式为E(rp)=rf+[E(rM)-rf]bP这就是CAPM模型的一个表达式。这就是说,在套利机制充分作用下,当市场无套利机会时,即便没有CAPM的严格假设,风险溢价与贝塔值的关系和CAPM模型中的关系是基本一致的。显然,套利定价理论为利用指数模型提供了理论上的依据。六、套利定价与CAPM理论清华大学经济管理学院国际金融与贸易系朱宝宪副教授10巴契里耶(Bachelier)1900年提出博士论文《投机理论》,对股价的变化规律作了最早的探索。运用多种数学方法论证股价变化无法预测。他以为只可预测市场某一瞬间价格的变动。在某个特定时点的每个成交价都反映了买方与卖方不同的观点,买方认为价格会涨,卖方认为价格会跌。因此,买卖双方都没有价格信息的优势,他们的输赢概率各为50%,“其数学期望值等于零”。只有市场基于某些理由不再认同原先的价格,价格才会发生变动。但是没有人知道市场何时会变,会朝什么方向变化。因此市场永远存在着50%的上涨概率,50%的下跌概率。一、巴契里耶的投机理论清华大学经济管理学院国际金融与贸易系朱宝宪副教授11巴契里耶的投机理论(2)①率先将概率论引入股票收益的预测,发展出随机过程的概念。他的关于股价的变动和时间关系的论断非常类似于描述分子在空间中随机运动的布朗运动理论,即随机漫步(randomwalk)理论,他的这一推论被认为是他的最重要的理论贡献。价格波动的幅度与时间区间长短的平方根成比例关系。美国学者伯恩斯坦用美国60年股价数据证明了这个论点。60年中,股价月波幅为5.9%,年均波幅为20%,是月波幅的3.5倍。而12的平方根为3.46。②他的关于股价不能预测,市场已经反映过去、现在和未来各种事件的观点与有效市场理论有许多暗合。巴的研究在当时没有产生大影响,原因是他的研究太超前,理论界与实务界都还没有作好接受的准备。清华大学经济管理学院国际金融与贸易系朱宝宪副教授12沃金(Working)是斯坦福大学统计学教授,1934年在《美国统计学会期刊》上发表《随机差分序列在时间序列分析中的应用》的文章,受到了萨缪尔森的赞赏。沃金分析长期商品期货价格的波动情况,记录期货交易的每一笔价格画成价格变动图,同时从扑克牌中随机抽取,并记录下结果,他发现不仅他无法区别出价格变动图和随机抽取扑克牌构成的乱数的变动图,就是芝加哥商品交易所的交易员也识别不出哪个是商品价格变动图。因此,他认为商品期货的价格变化是随机的。沃金的发现具有革命性的意义,但是,由于不是经济学家,他没有进一步探讨价格随机波动的原因。文章在当时也没有引起经济学界或投资界的注意。二、沃金的市场随机性研究清华大学经济管理学院国际金融与贸易系朱宝宪副教授131953年英国伦敦经济学院统计学教授坎德尔发表《经济的时间序列分析》的文章,分析了1928-38年间,19个行业股票的周均价格,分析了1883-1934年间芝商所小麦期货的月均价格和1816-1951年间纽商所的棉花期货的价格变化。得出价格是随机漫游的结论。认为无法利用利多消息或观察股价心得在市场中盈利。1959年3月,芝大统计学教授罗伯兹发文《股票市场“形态”与财务分析》,用电脑给出52个随机乱数,并定第一个为450,即当时道指的值,并画出图形。结果与道指变动图没有什么区别,能明显地看到技术分析者重视的头肩顶部分。因此,他也认为股价变化是随机的。三、坎德尔等人的研究清华大学经济管理学院国际金融与贸易系朱宝宪副教授14同年,美国天文物理学家奥斯伯恩发文《股票市场中的布朗运动》,得出以下结论:①投资者不关心股价的绝对水平,只关注股价变动的百分比;②与巴契里耶一样,认为预期的价格变动为零,市场上涨和下跌的百分比可能是相同的;③股价波动服从布朗运动,用实际数据多次检验证明模型是成立的。第一个进行价格随机性研究的经济学家是亚历山大,他为找出股价变化的规律,寻找投资至胜之道。1961年他发文《投机市场的价格波动:趋势或随机漫步》,检视了从1897-1959年的道指的每日收盘价,他认为股价的每一波上涨都会持续下去,即投资者进行短线的投机有可能获得比长期持有更多的收益。1964年又以“No.2”发文,承认短线投机并不能带来更高的收益。坎德尔等人的研究(2)清华大学经济管理学院国际金融与贸易系朱宝宪副教授15萨缪尔森对巴论文大加赞赏,但不同意股价上涨与下跌的概率相等,其数学期望值等于零的结论。他认为上升无限,但下降至多到零。他也认为投资者重视股价变动的百分比,而不是股价水平。对坎德尔的研究结果印象深刻,股价所以乱,是因价格与价值有差异。股价之所以大幅波动,因为股票缺乏明确的价值参考标准。1957年,萨发文提出股票的真实价值是其“影子价格”,而它的最佳估计值是股票在市场中的成交价格。萨强调没有信息就没有投资决策,市场会一片死寂。一点信息都会导致市场的不断涟漪。信息何时以何方式呈现无法预测,因此,股价随机波动。股市不是零和游戏,因投资者可以从经济增长中获得非零和部分的收益。但是,从股市中获得的超额报酬长期看是等于零的。由于萨分析的落脚点是理论而不是投资,他的观点也没有对实务界产生多大影响。但萨是美国经济学界最先提股价随机波动的学者。四、萨缪尔森股价随机波动的研究清华大学经济管理学院国际金融与贸易系朱宝宪副教授16法马,意裔美国人,39年生于波士顿乡下,是家中第一个大学生,在塔夫兹大学读书时主修法文。为挣钱曾为一教授打工,帮教授选投资股票的时机并将信息印刷出售给客户。他发现找不到一套可以获利的交易法则,以后他到芝大商学院读博,后留校教金融财务课。芝大重实证研究,有完整的数据库。法马研究股价的变动问题,成果发表在65年《商业期刊》上,全长70页,法马的研究对投资实务界产生了巨大的影响。他首次提出“效率市场”和“市场效率”的概念,并广为流传。69年12月,美国金融学会年会邀请他作为唯一的论文报告者(往年是三位)介绍他的理论及及实证检验结果。这年法马才30岁,作教授才一年。五、法马的有效市场理论清华大学经济管理学院国际金融与贸易系朱宝宪副教授17股价已反映所有已知信息的这种观点为有效市场假定(efficientmarkethypothesis,EMH)。按市场有效性的程度分为三种情况:①弱有效假定,认为股价已经反映了全部能从市场交易数据中得到的信息,这包括:过去的股价、交易量等数据。因此,市场的价格趋势分析是徒劳的。因为过去的股价资料是公开的,可以毫不费力就获得。②半强有效假定,认为与公司前景有关的全部公开的已知信息一定已经在股价中反映出来了。除了过去的价格信息外,还包括公司生产经营管理方面的基本情况、统计数据、技术状况、产品状况、各种会计、财务数据等。③强有效假定,认为股价反映了全部与公司有关的信息,甚至包括仅为内幕人员所知的信息。要求过高,在现实中并不存在。它的意义和价值在于从理论上确定理想市场的标准,为内幕交易的违法性提供理论上的根据。法马的有效市场理论(2)清华大学经济管理学院国际金融与贸易系朱宝宪副教授18采用随机游走模型检验上海和深圳股票市场是否达到弱有效。如果市场的股票价格变动符合随机游走模型,则认为已达到;否则认为尚未达到。采用当前美国学术界检测时间序列是否符合随机游走模型的一种常用的方法——Dickey&Fuller检验来进行实证研究,同时用游程检验法做一次对比。选用沪深共7
本文标题:套利定价理论与市场的有效性(1)
链接地址:https://www.777doc.com/doc-1456551 .html