您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 高分子纳米复合材料的制备、表征和应用前景
高分子纳米复合材料的制备、表征和应用前景作者:曾戎章明秋曾汉民编者按:纳米材料是当前材料科学研究的热点之一,涉及多种学科,具有极大的理论和应用价值,被誉为“21世纪最有前途的材料”,国内众多科研单位在此领域也作了大量工作,形成各自特有的研究体系。本文(Ⅰ、Ⅱ)就其中的高分子纳米复合材料,提出了作者的一些见解,供同行们共同探讨,以促进研究水平的提高,不断取得创新的成果。文摘综述了高分子纳米复合材料的发展研究现状,将高分子纳米复合材料的制备方法分为四大类:纳米单元与高分子直接共混(内含纳米单元的制备及其表面改性方法);在高分子基体中原位生成纳米单元;在纳米单元存在下单体分子原位聚合生成高分子及纳米单元和高分子同时生成。介绍了高分子纳米复合材料的表征技术及其应用前景。关键词高分子纳米复合材料,纳米单元,制备,表征,应用ProgressofPolymer-Nanocomposites(I)Preparation,CharacterizationandApplicationofPolymer-NanocompositesZengRongZhangMingqiuZengHanmin(MaterialsScienceInstituteofZhongshanUniversity,LaboratoryofPolymericComposite&FunctionalMaterials,TheStateEducationalCommissionofChinaGuangzhou510275)AbstractTheprogressofpolymer-nanocompositesisreviewed.Thepreparationmethodsareclassifiedintofourcategories:directlyblendingnano-unitswithpolymer(includingpreparationandsurface-modificationofnano-units),insitusynthesizingnano-unitsinpolymermatrix,insitupolymerizinginthepresenceofnano-unitsandsimultaneouslysynthesizingnano-unitsandpolymer.Thecharacterizationandapplicationofpolymer-nanocompositesarealsointroduced.KeywordsPolymer-nanocomposites,Nano-unit,Preparation,Characterization,Application1前言纳米材料科学是一门新兴的并正在迅速发展的材料科学。由于纳米材料体系具有许多独特的性质,应用前景广阔,而且涉及到原子物理、凝聚态物理、胶体化学、配位化学、化学反应动力学和表面、界面科学等多种学科,在实际应用和理论上都具有极大的研究价值,所以成为近些年来材料科学领域研究的热点之一,被誉为“21世纪最有前途的材料”[1,2]。早在1959年,著名物理学家RichardFeynman[3]在美国物理学会年会的讲演中首次提出了“Whatwouldhappenifwecouldarrangetheatomsonebyonethewaywewantthem?”的思想,日本科学家Kubo[4]在1962年就对纳米粒子的量子尺寸效应进行了理论上的研究,而日本名古屋大学上田良二教授则定义纳米微粒是用透射电镜TEM能看到的微粒;但直至80年代中期,随着介观物理的发展完善和实验观测技术的进步,纳米材料科学才得到迅速的发展。通常将纳米体系的范围定为1nm~100nm,处于团簇(尺寸小于1nm的原子聚集体)和亚微米级体系之间,其中纳米微粒是该体系的典型代表。由于纳米微粒尺寸小、比表面积大,表面原子数、表面能和表面张力随粒径的下降急剧增大,表现出小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特点,从而使纳米粒子出现了许多不同于常规固体的新奇特性,展示了广阔的应用前景;同时它也为常规的复合材料的研究增添了新的内容,含有纳米单元相的纳米复合材料[5]通常以实际应用为直接目标,是纳米材料工程的重要组成部分,正成为当前纳米材料发展的新动向,其中高分子纳米复合材料[6~10]由于高分子基体具有易加工、耐腐蚀等优异性能,且能抑止纳米单元的氧化和团聚,使体系具有较高的长效稳定性,能充分发挥纳米单元的特异性能,而尤受广大研究人员的重视。高分子纳米复合材料是由各种纳米单元与有机高分子材料以各种方式复合成型的一种新型复合材料,所采用的纳米单元按成分分可以是金属,也可以是陶瓷、高分子等;按几何条件分可以是球状、片状、柱状纳米粒子,甚至是纳米丝、纳米管、纳米膜等;按相结构分可以是单相,也可以是多相,涉及的范围很广,广义上说多相高分子复合材料,只要其某一组成相至少有一维的尺寸处在纳米尺度范围(1nm~100nm)内,就可将其看为高分子纳米复合材料。对通常的纳米粒子/高分子复合材料按其复合的类型大致可分为三种:0-0复合,0-2复合和0-3复合,纳米粒子在高分子基体中可以均匀分散,也可以非均匀分散;可能有序排布,也可能无序排布,甚至粒子聚集体形成分形结构;复合体系的主要几何参数包括纳米单元的自身几何参数,空间分布参数和体积分数,本文主要涉及后两种类型的高分子纳米复合材料。此外,还有1-3复合型,2-3复合型高分子纳米复合材料,高分子纳米多层膜复合材料,有机高分子介孔固体与异质纳米粒子组装的复合材料等等[1]。2高分子纳米复合材料的制备高分子纳米复合材料的涉及面较宽,包括的范围较广,近年来发展建立起来的制备方法也多种多样[11,12],可大致归为四大类:纳米单元与高分子直接共混,在高分子基体中原位生成纳米单元;在纳米单元存在下单体分子原位聚合生成高分子及纳米单元和高分子同时生成。各种制备纳米复合材料方法的核心思想都是要对复合体系中纳米单元的自身几何参数、空间分布参数和体积分数等进行有效的控制,尤其是要通过对制备条件(空间限制条件,反应动力学因素、热力学因素等)的控制,来保证体系的某一组成相至少一维尺寸在纳米尺度范围内(即控制纳米单元的初级结构),其次是考虑控制纳米单元聚集体的次级结构。2.1纳米单元与高分子直接共混此法是将制备好的纳米单元与高分子直接共混,可以是溶液形式、乳液形式,也可以是熔融形式共混。例如M.YOSHIDA等人[13]利用反相胶乳制备纳米TiO2粒子,在N-甲基吡咯烷酮(NMP)中与聚酰亚胺溶液共混,制备出纳米TiO2/PI复合材料;中条澄[14]报道用表面处理过的粒径约10nm的TiO2粒子[3.5%(质量分数)]与PP熔融共混,制成半透明、机械性能比纯PP提高的复合材料。2.1.1纳米单元的制备可用于直接共混的纳米单元的制备方法种类繁多[15~18],通常有两种形式的制备:从小到大的构筑式,即由原子、分子等前体出发制备;从大到小的粉碎式,即由常规块材前体出发制备(一般为了更好控制所制备的纳米单元的微观结构性能,常采用构筑式制备法)。总体上又可分为物理方法、化学方法和物理化学方法三种。物理方法有物理粉碎法,采用超细磨制备纳米粒子,利用介质和物料间相互研磨和冲击,并附以助磨剂或大功率超声波粉碎,达到微粒的微细化;物理气相沉积法(PVD):在低压的惰性气体中加热欲蒸发的物质,使之气化,再在惰性气体中冷凝成纳米粒子,加热源可以是电阻加热、高频感应、电子束或激光等,不同的加热方法制备的纳米粒子的量、大小及分布等有差异;还有流动液面真空蒸发法,放电爆炸法,真空溅射法等等。化学方法有化学气相沉积法(CVD),采用与PVD法相同的加热源,将原料(金属氧化物、氢氧化物,金属醇盐等)转化为气相,再通过化学反应,成核生长得到纳米粒子;水热合成法:高温高压下在水溶液或蒸气等流体中合成;化学沉淀法[19,20]:将沉淀剂加入金属盐溶液中,得到沉淀后进行热处理,包括直接沉淀、共沉淀、均一沉淀等;溶胶-凝胶(Sol-Gel)法[21,22]:将金属有机醇盐或无机盐溶液经水解,使溶质聚合成溶胶再凝胶固化,再在低温干燥,磨细后再煅烧得到纳米粒子;微乳液和反相胶束法[23~26]:微乳液和反相胶束是利用两种互不相容的溶剂(有机溶剂和水溶液),通过选择表面活性剂及控制相对含量,可将其水相液滴尺寸限制在纳米级,不同微乳液滴相互碰撞发生物质交换,在水核中发生化学反应,每个水相微区相当于一个“微反应器”,限制了产物粒子的大小,得到纳米粒子,而且采用合适的表面活性剂可吸附在纳米粒子的表面,对生成的粒子起稳定和保护作用,防止粒子的进一步生长,并能对纳米粒子起到表面化学改性作用,另外通过选择表面活性剂及助剂还可以控制水相微区的形状(水相微区起到一种“模板”作用),从而得到不同形状的纳米粒子包括球形、棒状、碟状,还可以制备纳米级核-壳双金属粒子、合金粒子、核-壳双半导体粒子等[27~29];另外还有喷雾法[30]、固液氧化还原法[31,32]等等。物理化学法有活性氢-熔融金属反应法:含有氢气的惰性气体等离子体与金属间产生电弧,熔融金属,同时电离的惰性气体和氢气溶入熔融金属,然后使熔融金属强制蒸发-凝聚,得到纳米粒子,此法能制备各种金属的高纯纳米粒子及陶瓷纳米粒子,如氮化钛、氮化铝等,生产效率高。总的来说,这类纳米单元与高分子直接共混的方法简单易行,可供选择的纳米单元种类多,其自身几何参数和体积分数等便于控制,但所得复合体系的纳米单元空间分布参数一般难以确定,纳米单元的分布很不均匀,且易于发生团聚,影响材料性能,改进方法是对制得的纳米单元做表面改性,改善其分散性、耐久性,提高其表面活性,还能使表面产生新的物理、化学和机械性能等特性[18,33]。2.1.2纳米单元的表面改性纳米单元表面改性方法根据表面改性剂和单元间有无化学反应可分为表面物理吸附方法和表面化学改性方法两类,既可以采用低分子化合物主要为各种偶联剂改性,例如让纳米SiO2粒子与C(OR)4、R′C(OR)3、R′R″C(OR)2在CCl4中反应,接上-OR基团[34];或者在用微乳液法制备纳米粒子时,采用聚磷酸盐或硫醇作为捕获剂(CapingReagent),通过终止微晶表面而使晶核停止生长,同时可避免粒子团聚[35,36];也可以通过锚固聚合在粒子表面形成聚合物改性,由于纳米粒子最终要分散在聚合物基体中,所以锚固聚合改性法尤其有意义。锚固聚合改性法可分为吸附包裹聚合改性和表面接枝聚合改性两类[37]。吸附包裹聚合改性一般是指两组份之间除了范德华力、氢键或配位键相互作用外,没有主离子键或共价键的结合,采用的方法主要有两种:在溶液或熔体中聚合物沉积、吸附到粒子表面上包裹改性和单体吸附包裹后聚合,例如二氧化硅或硅酸盐粒子表面的硅醇基能吸附很多中极性(如PS)和高极性的均聚物或共聚物;Hiroshi则把一系列金属微粉浸泡在含有聚电解质的吡咯、呋喃、噻吩、苯胺及其衍生物的溶液中,让单体吸附在粒子表面,再放入氧化剂溶液中聚合,就在金属粒子表面包上一层导电聚合物,既保持了金属的高电导率,又可防止粒子被空气氧化;而O'Haver等人[38]在粒子表面预先吸附生成低分子表面活性剂双层胶束,有机单体包溶在双层胶束中,发生聚合,粒子通过表面活性剂架桥而吸附聚合物。而表面接枝聚合改性主要分为在含有可聚合物基团的粒子表面接枝聚合物(要求粒子表面有能与单体共聚的活性基团,常用有机硅烷(RSiX3)作为无机粒子的界面改性剂),从粒子表面引发接枝聚合物(在粒子表面引入具有引发活性的活性种(自由基、阳离子或阴离子等),再引发接枝聚合物,例如:利用等离子体与辐射等使无机粒子表面的羟基产生具有引发活性的活性种,来引发单体聚合)和活性聚合物与粒子表面的活性基团反应形成接枝三种。总之,采用锚固聚合改性既可改变粒子的表面极性,增加其与有机聚合物的相容性,且可提高其热、光稳定性和耐化学药品性,还可通过引入功能高分子,产生新的功能,具有广
本文标题:高分子纳米复合材料的制备、表征和应用前景
链接地址:https://www.777doc.com/doc-1465206 .html