您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > Learning with Limited Visibility
LearningwithLimitedVisibilityEliDichtermanDepartmentofMathematicsLondonSchoolofEconomicsHoughtonStreet,LondonWC2A2AE,UK.And,DepartmentofComputerScienceRoyalHollowayUniversityofLondonEgham,SurreyTW200EX,UK.E-mail:eli@cdam.lse.ac.ukAbstractThispapersurveysrecentstudiesoflearningproblemsinwhichthelearnerfacesrestrictionsontheamountofinformationhecanextractfromeachexampleheencounters.OurmainframeworkfortheanalysisofsuchscenariosistheRFA(RestrictedFocusofAttention)model.Whilebeinganaturalre nementofthePAClearningmodel,someofthefundamentalPAC-learningresultsandtechniquesfailintheRFAparadigm;learnabilityintheRFAmodelisnolongercharacterizedbytheVCdimension,andmanyPAClearningalgorithmsarenotapplicableintheRFAsetting.Hence,theRFAformulationre ectstheneedfornewtechniquesandtoolstocopewithsomefundamentalconstraintsofrealisticlearningproblems.Wealsopresentsomeparadigmsandalgorithmsthatmayserveasa rststeptowardsansweringthisneed.TwomaintypesofrestrictionscanbeconsideredinthegeneralRFAsetting:Inthemorestringentone,calledk-RFA,onlykofthenattributesofeachexamplearerevealedtothelearner,whileinthemorepermissiveone,calledk-wRFA,therestrictionismadeonthesizeofeachobservation(kbits),andnorestrictionismadeonhowtheobservationsareextractedfromtheexamples.Weshowaninformation-theoreticcharacterizationofRFAlearnabilityuponwhichwebuildageneraltoolforprovinghardnessresults.WethenapplythisandothernewtechniquesforstudyingRFAlearningtotwoparticularlyexpressivefunctionclasses,k-decision-lists(k-DL)andk-TOP,theclassofthresholdsofparityfunctionsinwhicheachparityfunctiontakesatmostkinputs.Amongotherresults,weshowahardnessresultfork-RFAlearnabilityofk-DL,k n 2.Insharpcontrast,an(n 1)-RFAalgorithmforlearning(n 1)-DLispresented.Similarly,weprovethat1-DLislearnableifandonlyifatleasthalfoftheinputsarevisibleineachinstance.Inaddition,weshowthatthereisauniform-distributionk-RFAlearningalgorithmfortheclassofk-DL.Fork-TOPweshowweaklearnabilitybyak-RFAalgorithm(withe cienttimeandsamplecomplexityforconstantk)andstronguniform-distributionk-RFAlearnabilityofk-TOPwithe cientsamplecomplexityforconstantk.Finally,bycombiningsomeofourk-DLandk-TOPresults,weshowthat,unlikethePACmodel,weaklearningdoesnotimplystronglearninginthek-RFAmodel.Wealsoshowageneraltechniqueforcomposinge cientk-RFAalgorithms,andapplyittodeduce,forinstance,thee cientk-RFAlearnabilityofk-DNFformulas,andthee cient1-RFAlearnabilityofaxis-alignedrectanglesintheEuclideanspaceRn.Wealsoprovethek-RFAlearnabilityofricherclassesofBooleanfunctions(suchask-decisionlists)withrespecttoagivendistribution,andthee cient(n 1)-RFAlearnability(for xedn),underproductdistributions,ofclassesofsubsetsofRnwhicharede nedbymildsurfaces.Forthek-wRFArestriction,weshowthatfork=O(logn),e cientk-wRFAlearningisrobustagainstclassi cationnoise.Asastraightforwardapplication,weobtainanewsimplenoise-tolerantalgorithmfortheclassofk-decisionlists,byconstructinganintuitivek-wRFAalgorithmforthistask.11IntroductionLearningtheoryhasbeenmainlyconcernedwiththeproblemofgeneralizingfromasampleoffully-speci edclassi edexamples.Forthisproblemclassicalstatisticaluniformconvergencetheoremshavebeenusedtocharacterizescenariosinwhichagoodgeneralizationcanbefoundwithhighcon dence[42],speci cboundsonthesamplesizeneededforsuchgeneralizationhavebeenproven[14],ande cientlearningalgorithmshavebeendesignedforspeci ccases(cf.[41]).Ithasalsobeennoticedthatinmanyrealisticscenarios,thesamplesfromwhichthelearnerhastogeneralizearenotfullyspeci ed[28,30].Theimportanceofthis\focus-of-attentionproblemhasbeennoticedsincetheemergenceofthecomputationallearningtheory[1].However,thelearningmodelswhichhavebeenformulatedforstudyingthistypeofproblemsusuallyassume|sometimesimplicitly[13]|thatthereisa xedsetofrelevantvariableswhichareinvisibletothelearner.Insuchproblems,thelearnermayonlyattemptto ndagoodprobabilisticpredictionrulewithrespecttothevisibleattributes.However,asobservedbyBen-DavidandDichterman[6],therearemanycasesinwhichtherearenoattributeswhichareinherentlyinvisible,butratherthereareotherrestrictionsonthevisibilityoftheattributes,suchastheamountofvisibleattributesineachsingleexample.Sinceinsuchcaseseveryattributeispotentiallyvisible,thelearnermayattemptto ndmorethanjustaprobabilisticpredictionrule;hemaytrytoformulateafulldescriptionoftheconceptwithrespecttoalltherelevantattributes.Consider,forinstance,medicalresearchwhichaimsatformingtheexactpatternofsomedisease.Typically,thereissomeaprioriknowledgeaboutthedisease,suchasthepotentiallyrelevantattributesofthediseaseandthepossiblepatternsofthediseasewithrespecttotheseattributes.Then,inthecourseofstudyingthedisease,itisusuallypossibletosamplepeoplefromagivenpopulationandconductseveraltestsoneachoneofthem.However,duetopracticalconsiderations(e.g.,thecostofthetests),orinherentrestrictions(e.g.,thefactthatsomebloodtestsmaybedestructive,ormaynotbeusableformorethanalimitednumberoftests),theamountofdatathatisavailableforeachsinglepersonislimited.Insuchcircumstances,researchersfacethefollowingproblem:Theycanchooseaseto
本文标题:Learning with Limited Visibility
链接地址:https://www.777doc.com/doc-1477 .html