您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 高三数学复习函数知识点
1函数复习主要知识点一、函数的概念与表示1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B。注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射2、函数构成函数概念的三要素①定义域②对应法则③值域两个函数是同一个函数的条件:三要素有两个相同1、下列各对函数中,相同的是()A、2163(),()fxxgxxB、1,0(),()1,0xxfxgxxxC、vvvguuuf11)(,11)(D、f(x)=x,2)(xxf2、}30|{},20|{yyNxxM给出下列四个图形,其中能表示从集合M到集合N的函数关系的有()A、0个B、1个C、2个D、3个二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)指数函数的底数必须大于零且不等于1;1.函数234yxx的定义域为2求函数定义域的两个难点问题(1)()x已知f的定义域是[-2,5],求f(2x+3)的定义域。(2)(21)xx已知f-的定义域是[-1,3],求f()的定义域xxxx1211122211112222yyyy3OOOO2例2设12()(1)fxx,则(2)xf的定义域为__________变式练习:24)2(xxf,求)(xf的定义域。三、函数的值域1求函数值域的方法①直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;②换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;③判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且x∈R的分式;④分离常数:适合分子分母皆为一次式(x有范围限制时要画图);⑤单调性法:利用函数的单调性求值域;⑥图象法:二次函数必画草图求其值域;⑦利用对勾函数⑧几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数1.(直接法)2123yxx2.2()2242fxxx3.(换元法)12xxy4.(Δ法)432xxy5.11y22xx6.(分离常数法)①1xxy②31(24)21xyxx37.(单调性)3([1,3])2yxxx8.①111yxx,②11yxx(结合分子/分母有理化的数学方法)9.(图象法)232(12)yxxx10.(对勾函数)82(4)yxxx11.(几何意义)21yxx四.函数的奇偶性1.定义:设y=f(x),x∈A,如果对于任意x∈A,都有()()fxfx,则称y=f(x)为偶函数。如果对于任意x∈A,都有()()fxfx,则称y=f(x)为奇函数。2.性质:①y=f(x)是偶函数y=f(x)的图象关于y轴对称,y=f(x)是奇函数y=f(x)的图象关于原点对称,②若函数f(x)的定义域关于原点对称,则f(0)=0③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]3.奇偶性的判断①看定义域是否关于原点对称②看f(x)与f(-x)的关系1已知函数)(xf是定义在),(上的偶函数.当)0,(x时,4)(xxxf,则当),0(x时,)(xf.42已知定义域为R的函数12()2xxbfxa是奇函数。(Ⅰ)求,ab的值;(Ⅱ)若对任意的tR,不等式22(2)(2)0fttftk恒成立,求k的取值范围;3已知)(xf在(-1,1)上有定义,且满足),1()()()1,1(,xyyxfyfxfyx有证明:)(xf在(-1,1)上为奇函数;4若奇函数))((Rxxf满足1)2(f,)2()()2(fxfxf,则)5(f_______五、函数的单调性1、函数单调性的定义:2设xgfy是定义在M上的函数,若f(x)与g(x)的单调性相反,则xgfy在M上是减函数;若f(x)与g(x)的单调性相同,则xgfy在M上是增函数。1判断函数)()(3Rxxxf的单调性。52函数2(62)12xxy的单调增区间是________3(高考真题)已知(31)4,1(),1xaxaxfxax是(,)上的减函数,那么a的取值范围是()(A)(0,1)(B)1(0,)3(C)11[,)63(D)1[,1)6六.二次函数(涉及二次函数问题必画图分析)1.二次函数f(x)=ax2+bx+c(a≠0)的图象是一条抛物线,对称轴abx2,顶点坐标)44,2(2abacab2.二次函数与一元二次方程关系一元二次方程)0(02acbxax的根为二次函数f(x)=ax2+bx+c(a≠0)0y的x的取值。一元二次不等式)0(02cbxax的解集(a0)二次函数△情况一元二次不等式解集Y=ax2+bx+c(a0)△=b2-4acax2+bx+c0(a0)ax2+bx+c0(a0)图象与解△021xxxxx或21xxxx△=00xxx△0R1、已知函数54)(2mxxxf在区间),2[上是增函数,则)1(f的范围是()(A)25)1(f(B)25)1(f(C)25)1(f(D)25)1(f62、方程0122mxmx有一根大于1,另一根小于1,则实根m的取值范围是_______九.指数式1.幂的有关概念(1)零指数幂)0(10aa(2)负整数指数幂10,nnaanNa(3)正分数指数幂0,,,1mnmnaaamnNn;(5)负分数指数幂110,,,1mnmnmnaamnNnaa(6)0的正分数指数幂等于0,0的负分数指数幂没有意义.2.有理数指数幂的性质10,,rsrsaaaarsQ20,,srrsaaarsQ30,0,rrrabababrQ3.根式根式的性质:当n是奇数,则aann;当n是偶数,则00aaaaaann(1)213323121)()1.0()4()41(baab十.指数函数名称指数函数一般形式y=ax(a1)y=ax(0a1)定义域(-∞,+∞)值域(0,+∞)过定点(0,1)图象单调性在(-∞,+∞)上为增函数在(-∞,+∞)上为减函数值分布X0时0y1,x0时,y1,x=0,y=1X0时y1,x0时,0y1,x=0,y=172.比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:2、研究指数函数问题,尽量化为同底,并注意对数问题中的定义域限制3、指数函数中的绝大部分问题是指数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。1、(1)12253xyx的定义域为_______;(2)312xy的值域为_________;(3)2()2xxy的递增区间为___________,值域为___________2、(1)112042xx,则________x3、要使函数ayxx421在1,x上0y恒成立。求a的取值范围。十.函数的图象变换(1)1、平移变换:(左+右-,上+下-)即kxfyxfyhxfyxfykkhh)()()()(,0;,0,0;,0上移下移左移右移①对称变换:(对称谁,谁不变,对称原点都要变))()()()()()()()()()()()(1xfyxfyxfyxfyxfyxfyxfyxfyxfyxfyxfyxfyxxyxyyx轴下方图上翻轴上方图,将保留边部分的对称图轴右边不变,左边为右原点轴轴1.f(x)的图象过点(0,1),则f(4-x)的图象过点()A.(3,0)B.(0,3)C.(4,1)D.(1,4)2.作出下列函数的简图:8(1)y=234xx;(2)y=|2x-1|;(3)y=2|x|;十.函数的其他性质1.函数的单调性通常也可以以下列形式表达:1212()()0fxfxxx单调递增1212()()0fxfxxx单调递减2.函数的奇偶性也可以通过下面方法证明:()()0fxfx奇函数()()0fxfx偶函数3.抽象函数的模型:(1)()()()fxyfxfyykx(2)()()()xfxyfxfyya
本文标题:高三数学复习函数知识点
链接地址:https://www.777doc.com/doc-1488162 .html