您好,欢迎访问三七文档
阶段测试一、选择题1.在⊙O中,∠AOB=84°,则弦AB所对的圆周角是___________.[]A.42°;B.138°;C.84°;D.42°或138°.2.如图,圆内接四边形ABCD的对角线AC,BD把四边形的四个角分成八个角,这八个角中相等的角的对数至少有___________.[]A.1对;B.2对;C.3对;D.4对.3.如图,AC是⊙O的直径,AB,CD是⊙O的两条弦,且AB∥CD.如果∠BAC=32°,则∠AOD=___________.[]A.16°;B.32°;C.48°;D.64°.二、计算题4.如图,AD是△ABC外接圆的直径,AD=6cm,∠DAC=∠ABC.求AC的长.5.已知:△DBC和等边△ABC都内接于⊙O,∠BCD=75°(如图).求∠ABD、∠DBC的度数.6.如图,圆内接△ABC的外角∠MAB的平分线交圆于E,EC=8cm.求BE的长.7.如图,等腰三角形ABC的顶角为50°,AB=AC,以AB为直径的圆交AC、BD与点E、D,连接DE,1、求角EDC的度数2、证明:BD=BC8.如图,AB是⊙O的直径,AB=2cm,点C在圆周上,且∠BAC=30°,∠ABD=120°,CD⊥BD于D.求BD的长.9.如图,△ABC中,∠B=60°,AC=3cm,⊙O为△ABC的外接圆.求⊙O的半径.10.已知等腰三角形的腰长为13cm,底边长为10cm,求它的外接圆半径.22.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=a,BD=b,BE=c.求AE的长.23.如图,△ABC中,AD是∠BAC的平分线,延长AD交△ABC的外接圆于E,已知AB=6cm,BD=2cm,BE=2.4cm.求DE的长.24.如图,梯形ABCD内接于⊙O,AB∥CD,的度数为60°,∠B=105°,⊙O的半径为6cm.求BC的长.25.已知:如图,AB是⊙O的直径,AB=4cm,E为OB的中点,弦CD⊥AB于E.求CD的长.26.如图,AB为⊙O的直径,E为OB的中点,CD为过E点并垂直AB的弦.求∠ACE的度数.27.已知:如图,在△ABC中,∠C=90°,∠A=38°,以C为圆心,BC为半径作圆,交AB于D,求的度数.28.如图,△ABC内接于圆O,AD为BC边上的高.若AB=4cm,AC=3cm,AD=2.5cm,求⊙O的半径.29.设⊙O的半径为1,直径AB⊥直径CD,E是OB的中点,弦CF过E点(如图),求EF的长.30.如图,在⊙O中直径AB,CD互相垂直,弦CH交AB于K,且AB=10cm,CH=8cm.求BK∶AK的值.31.如图,⊙O的半径为40cm,CD是弦,A为的中点,弦AB交CD于F.若AF=20cm,BF=40cm,求O点到弦CD的弦心距.32.如图,四边形ABCD内接于以AD为直径的圆O,且AD=4cm,AB=CB=1cm,求CD的长.三、证明题33.如图,已知△ABC内接于半径为R的⊙O,A为锐角.求证:ABCsin=2R34.已知:如图,在△ABC中,AD,BD分别平分∠BAC和∠ABC,延长AD交△ABC的外接圆于E,连接BE.求证:BE=DE.35.如图,已知D为等边三角形ABC外接圆上的上的一点,AD交BC边于E.求证:AB为AD和AE的比例中项.36.已知:如图,在△ABC中,AB=AC,以AB为直径的圆交BC于D.求证:D为BC的中点.37.已知:如图,⊙O是△ABC的外接圆,AD⊥BC于D,AE平分∠BAC交⊙O于E.求证:AE平分∠OAD.38.已知:如图,△ABC的AB边是⊙O的直径,另两边BC和AC分别交⊙O于D,E两点,DF⊥AB,交AB于F,交BE于G,交AC的延长线于H.求证:DF2=HF·GF.39.已知:如图,圆内接四边形ABCD中,BC=CD.求证:AB·AD+BC2=AC2.40.已知:如图,AB是半圆的直径,AC是一条弦,D是中点,DE⊥AB于E,交AC于F,DB交AC于G.求证:AF=FG.41.如图,AB是⊙O的弦,P是AB所对优弧上一点,直径CD⊥AB,PB交CD于E,延长AP交CD的延长线于F.求证:△EPF∽△EOA.42.已知:如图,AB是⊙O的直径,弦CD⊥AB于E,M为上一点,AM的延长线交DC于F.求证:∠AMD=∠FMC.43.已知:如图,AB,AC分别为⊙O的直径与弦,CD⊥AB于D,E为⊙O外一点,且AE=AC,BE交⊙O于F,连结ED,CF.求证:∠ACF=∠AED.44.如图,⊙O的半径OD,OE分别垂直于弦AB和AC,连结DE交AB,AC于F,G.求证:AF2=AG2=DF·GE.45.如图,△ABC内接于圆,D是AB上一点,AD=AC,E是AC延长线上一点,AE=AB,连接DE交圆于F,延长ED交圆于G.求证:AF=AG.46.已知:如图,⊙O的两条直径AB⊥CD,E是OD的中点,连结AE,并延长交⊙O于M,连结CM,交AB于F.求证:OB=3OF.47.已知:如图,△ABC是等边三角形,以AC为直径作圆交BC于D,作DE⊥AC交圆于E.(1)求证:△ADE是等边三角形;(2)求S△ABC∶S△ADE.48.已知:如图,半径都是5cm的两等圆⊙O1和⊙O2相交于点A,B,过A作⊙O1的直径AC与⊙O2交于点D,且AD∶DC=3∶2,E为DC的中点.(1)求证:AC⊥BE;(2)求AB的长.49.如图,已知在直角三角形ABC中,∠C=90°,CD⊥AB,AD是⊙O的直径,且D点在AB上.参考答案一、选择题1.D2.D3.D4.D二、计算题DE⊥直线OB于E,∠DOE=30°,应用勾股定理求出BD的长.8.9cm或4cm.提示:连接AC,BC.由AB为直径可知∠ACB=90°.又CD⊥AB于D,所以CD2=AD·BD,即CD2=AD·(AB-AD).又AB=13,CD=6,所以36=AD(13-AD),AD2-13AD+36=0,解出AD=9(cm)或AD=4(cm).11.50°.提示:延长DF,DG分别交⊙O于C',E',因为∠CFA=∠DFB,∠DGA=∠EGB,所以∠CFA=∠C'FA,∠EGB=∠E'GB.因为AB为⊙O的直径,所以根据轴对称图形的性质可知为100°,就有∠FDG=50°.又因为∠DAB=∠ABC=90°.所以AC和BD为⊙O的直径.所以△APC与△BPD为直角三角形.所以PA2+PC2=AC2,PB2+PD2=BD2,就有PA2+PB2+PC2+PD2=AC2+BD2=4.知BC//AD.所以AC=BD.又AD为直径,所以∠ABD=90°.在Rt△ABD中,AD=2R,AB=a,所以15.提示:根据圆周角度量定理有:(∠A+∠B)的度数=m°,(∠B+∠C)的度数=n°,(∠C+∠A)的度数=p°.由前面三个等式得:16.75°.提示:由BC,DF分别为⊙O的直径,可得∠A=∠DEF=90°.又AB=AC,所以∠ABC=45°.在Rt△DEF中,由EF=是240°,∠DBE=120°.所以∠ABD+∠CBE=120°-45°=75°.17.50°,50°,80°.提示:连接AD,则AD平分∠A.于D,则AD=CD,∠AOD=DOC.由∠B=60°可得∠OAD=30°.所解法二过A作直径AD,连接CD,则∠ACD=90°,∠ADC=∠ABC=60°;又知AC=3,这就容易求出AD.=90°,所以BE2=AB2-AE2=82-22=60.又因为BF∶FC=5∶1,故设BF=5x,FC=x,则BC=6x.因为EF⊥BC,所以BE2=BF·BC,解法二连接BE,则BE⊥AC,所以BE2=82-22=60.在直角三角形BCE中ABC外接圆于E,连接CE,则AD⊥BC,BD=CD=5.由垂径定理知:AE为△ABC外接圆的直径,所以∠ACE=90°.在Rt△ADC中,AD=23.0.8cm.提示:只需证明△ABE∽△BDE.CE.26.60°.提示:连接OC,BC.只需证明△OCB为等边三角形,则∠ABC=60°,而∠ACB=90°,所以∠CAB=30°,即可求出∠ACE=60°.27.76°.提示:延长BC交⊙C于E,连接DE,只需证明∠28.2.4cm.提示:连接AO并延长交⊙O于E,则AE为⊙O4.8.所以⊙O的半径为2.4(cm).30.7∶1.提示:连接HD.只需证明△CKO∽△CDH.所以31.25cm.提示:连接AO并延长交⊙O于E,则AE为⊙OCD,OM就是CD的弦心距.只需证明△AMF∽△ABE,由此得32.3.5cm.提示:解法一连接OB交弦AC于G.连接BD.只需证明△ABG∽△DAB.由此求出AG,进而求出OG,而CD=2OG.解法二设AB的延长线与DC的延长线相交于点E,在△BCE和△OAB中,∠BCE=∠OAB,∠EBC=∠D=2∠ADB=∠BOA.所以△BCE∽△OAB,从而BC∶CE=OA∶AB.所以CE=三、证明题33.提示:作直径BD,连接CD,则∠BCD=90°,且∠A=∠D.在34.提示:只需证明∠BDE=∠DBE.证明时利用三角形外角定理及圆周角定理的推论.35.提示:连接BD.只需证明△ABE∽△ADB.36.提示:连接AD.37.提示:证法一延长AO交⊙O于M,延长AD交⊙O于N.连证法二过A作直径AM,连接MB,则∠AMB=∠ACB,又∠ABM=∠ADC=直角,所以∠BAM=∠DAC,从而AE平分∠OAD.·GF=BF·AF.再根据射影定理得DF2=AF·FB,所以DF2=HF·GF.39.提示:连接BD交AC于E.只需证明△BEC∽△ABC∽△AC·AE=AC(AC-EC)=AC2-AC·EC.40.提示:连接AD.由AB为直径得∠ADB=90°.再由DE⊥∠ADE,∴AF=DF.这就容易证出AF=FG.41.提示:∠AEO=(∠BEO)=∠FEP,∠OAE=(∠AOC-∠AEO=∠APB-∠FEP)=∠F.42.提示:连接MB.因为AB是⊙O的直径,所以∠AMB=∠从而∠AMD=∠FMC.43.提示:连接BC.因为AB为⊙O直径,所以∠ACB=90°.因为CD⊥AB于D,所以AC2=AD·AB.又因为AE=AC,所以△ADE,就有∠AED=∠ABE=∠ACF.44.提示:连接AD,AE,应用三角形外角定理,先证明∠AFG=AF·AG=DF·GE,就有AF2=AG2=DF·GE.45.提示:先证明△ABC≌△AED,连接BF,则∠G=∠ADF-∠GAB=∠ACB-∠GFB=∠AFG,所以AF=AG.46.提示:设⊙O的半径长为1.连接MD.显然△CAE∽△OF.47.(1)提示:在△ADE中,∠ADE=60°,∠DEA=∠DCA=60°.所以△ADE是一个等边三角形.48.(1)提示:连接BD,BC.因为⊙O1与⊙O2是等圆,又因为E为DC中点,所以BE⊥AC.所以AD=6,DC=4,所以DE=2,AE=8.因为AC为⊙O1直径,所以∠ABC=90°,又因为BE⊥AC,所以AB2=AE·AC=80,得出AB=49.(1)提示:连接ED.因为AD为直径,所以∠AED=90°.又ACB=90°,CD⊥AB,所以AC2=AD·AB,BC2=AB·BD,由此(2)2∶1.提示:AE∶CE=AD2∶CD2=2∶1.
本文标题:圆周角习题精选
链接地址:https://www.777doc.com/doc-1491933 .html