您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 《高一数学必修1》函数的概念、定义域、值域练习题(含答案)
第1页共4页函数的概念、定义域、值域练习题班级:高一(3)班姓名:得分:一、选择题(4分×9=36分)1.集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数是()A.f(x)→y=12xB.f(x)→y=13xC.f(x)→y=23xD.f(x)→y=x2.函数y=1-x2+x2-1的定义域是()A.[-1,1]B.(-∞,-1]∪[1,+∞)C.[0,1]D.{-1,1}3.已知f(x)的定义域为[-2,2],则f(x2-1)的定义域为()A.[-1,3]B.[0,3]C.[-3,3]D.[-4,4]4.若函数y=f(3x-1)的定义域是[1,3],则y=f(x)的定义域是()A.[1,3]B.[2,4]C.[2,8]D.[3,9]5.函数y=f(x)的图象与直线x=a的交点个数有()A.必有一个B.一个或两个C.至多一个D.可能两个以上6.函数f(x)=1ax2+4ax+3的定义域为R,则实数a的取值范围是()A.{a|a∈R}B.{a|0≤a≤34}C.{a|a>34}D.{a|0≤a<34}7.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润y与营运年数x(x∈N)为二次函数关系(如图),则客车有营运利润的时间不超过()年.A.4B.5C.6D.78.(安徽铜陵县一中高一期中)已知g(x)=1-2x,f[g(x)]=1-x2x2(x≠0),那么f12等于()A.15B.1C.3D.309.函数f(x)=2x-1,x∈{1,2,3},则f(x)的值域是()A.[0,+∞)B.[1,+∞)C.{1,3,5}D.R第2页共4页二、填空题(4分)10.某种茶杯,每个2.5元,把买茶杯的钱数y(元)表示为茶杯个数x(个)的函数,则y=________,其定义域为________.(5分)11.函数y=x+1+12-x的定义域是(用区间表示)________.三、解答题(5分×3=15分)12.求下列函数的定义域.(1)y=x+1x2-4;(2)y=1|x|-2;(3)y=x2+x+1+(x-1)0.(10分×2=20分)13.(1)已知f(x)=2x-3,x∈{0,1,2,3},求f(x)的值域.(2)已知f(x)=3x+4的值域为{y|-2≤y≤4},求此函数的定义域.(10分×2=20分)14.(1)已知f(x)的定义域为[1,2],求f(2x-1)的定义域;(2)已知f(2x-1)的定义域为[1,2],求f(x)的定义域;第3页共4页1.2.1函数的概念答案一、选择题1.[答案]C[解析]对于选项C,当x=4时,y=83>2不合题意.故选C.2.[答案]D[解析]使函数y=1-x2+x2-1有意义应满足1-x2≥0x2-1≥0,∴x2=1,∴x=±1.3.[答案]C[解析]∵-2≤x2-1≤2,∴-1≤x2≤3,即x2≤3,∴-3≤x≤3.4.[答案]C[解析]由于y=f(3x-1)的定义域为[1,3],∴3x-1∈[2,8],∴y=f(x)的定义域为[2,8]。5.[答案]C[解析]当a在f(x)定义域内时,有一个交点,否则无交点.6.[答案]D[解析]由已知得ax2+4ax+3=0无解当a=0时3=0,无解;当a≠0时,Δ<0即16a2-12a<0,∴0<a<34,综上得,0≤a<34,故选D.7.[答案]D[解析]由图得y=-(x-6)2+11,解y≥0得6-11≤x≤6+11,∴营运利润时间为211.又∵6<211<7,故选D.8.[答案]A[解析]令g(x)=1-2x=12得,x=14,∴f12=fg14=1-142142=15,故选A.9.[答案]C二、填空题10.y=2.5x,x∈N*,定义域为N*11.[-1,2)∪(2,+∞)第4页共4页[解析]使函数有意义应满足:x+1≥02-x≠0∴x≥-1且x≠2,用区间表示为[—1,2)∪(2,+∞).三、解答题12.[解析](1)要使函数y=x+1x2-4有意义,应满足x2-4≠0,∴x≠±2,∴定义域为{x∈R|x≠±2}.(2)函数y=1|x|-2有意义时,|x|-20,∴x2或x-2.∴定义域为{x∈R|x2或x-2}.(3)∵x2+x+1=(x+12)2+340,∴要使此函数有意义,只须x-1≠0,∴x≠1,∴定义域为{x∈R|x≠1}.13.[解析](1)当x分别取0,1,2,3时,y值依次为-3,-1,1,3,∴f(x)的值域为{-3,-1,1,3}.(2)∵-2≤y≤4,∴-2≤3x+4≤4,即3x+4≥-23x+4≤4,∴x≥-2x≤0,∴-2≤x≤0,即函数的定义域为{x|-2≤x≤0}.14.解析:对于抽象函数的定义域,必须在透彻理解函数f(x)的定义域的概念的基础上,灵活运用.(1)∵f(x)的定义域为[1,2].∴12x∴1212x≤≤∴312x≤≤.∴f(2x—1)的定义域为[1,32].(2)设t=2x—1,∵f(2x—1)的定义域为[1,2].∴12x,∴1≤2x—1≤3即:1≤t≤3,∴f(x)的定义域为[1,3].
本文标题:《高一数学必修1》函数的概念、定义域、值域练习题(含答案)
链接地址:https://www.777doc.com/doc-1507993 .html