您好,欢迎访问三七文档
1第七篇立体几何与空间向量专题7.02空间点、直线、平面的位置关系【考试要求】1.借助长方体,在直观认识空间点、直线、平面的位置关系的基础上,抽象出空间点、直线、平面的位置关系的定义;2.了解四个公理和一个定理.【知识梳理】1.平面的基本性质(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内.(2)公理2:过不在同一条直线上的三点,有且只有一个平面.(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.2.空间点、直线、平面之间的位置关系直线与直线直线与平面平面与平面平行关系图形语言符号语言a∥ba∥αα∥β相交关系图形语言符号语言a∩b=Aa∩α=Aα∩β=l独有关系图形语言符号语言a,b是异面直线a⊂α3.平行公理(公理4)和等角定理平行公理:平行于同一条直线的两条直线互相平行.等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(1)定义:设a,b是两条异面直线,经过空间任一点O作直线a′∥a,b′∥b,把a′与b′所成的锐角(或直角)2叫做异面直线a与b所成的角(或夹角).(2)范围:0,π2.【微点提醒】1.公理2的三个推论推论1:经过一条直线和这条直线外一点有且只有一个平面;推论2:经过两条相交直线有且只有一个平面;推论3:经过两条平行直线有且只有一个平面.2.两异面直线所成的角归结到一个三角形的内角时,容易忽视这个三角形的内角可能等于两异面直线所成的角,也可能等于其补角.【疑误辨析】1.判断下列结论正误(在括号内打“√”或“×”)(1)两个平面α,β有一个公共点A,就说α,β相交于过A点的任意一条直线.()(2)两两相交的三条直线最多可以确定三个平面.()(3)如果两个平面有三个公共点,则这两个平面重合.()(4)若直线a不平行于平面α,且a⊄α,则α内的所有直线与a异面.()【教材衍化】2.(必修2P52B1(2)改编)如图所示,在正方体ABCD-A1B1C1D1中,E,F分别是AB,AD的中点,则异面直线B1C与EF所成角的大小为()A.30°B.45°C.60°D.90°3.(必修2P45例2改编)已知空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是()A.梯形B.矩形C.菱形D.正方形3【真题体验】4.(2019·聊城调研)α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是()A.垂直B.相交C.异面D.平行5.(一题多解)(2017·全国Ⅰ卷)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()6.(2018·宁波月考)在正方体ABCD-A1B1C1D1中,E,F分别为棱AA1,CC1的中点,则在空间中与三条直线A1D1,EF,CD都相交的直线有________条.4【考点聚焦】考点一平面的基本性质及应用【例1】如图,在正方体ABCD-A1B1C1D1中,E,F分别是AB和AA1的中点.求证:(1)E,C,D1,F四点共面;(2)CE,D1F,DA三线共点.【规律方法】1.证明点或线共面问题的两种方法:(1)首先由所给条件中的部分线(或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)将所有条件分为两部分,然后分别确定平面,再证两平面重合.2.证明点共线问题的两种方法:(1)先由两点确定一条直线,再证其他各点都在这条直线上;(2)直接证明这些点都在同一条特定直线(如某两个平面的交线)上.3.证明线共点问题的常用方法是:先证其中两条直线交于一点,再证其他直线经过该点.【训练1】如图,在空间四边形ABCD中,E,F分别是AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.5(1)求证:E,F,G,H四点共面;(2)设EG与FH交于点P,求证:P,A,C三点共线.考点二判断空间直线的位置关系【例2】(1)(一题多解)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是()A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交(2)将图(1)中的等腰直角三角形ABC沿斜边BC的中线AD折起得到空间四面体ABCD,如图(2),则在空间四面体ABCD中,AD与BC的位置关系是()A.相交且垂直B.相交但不垂直C.异面且垂直D.异面但不垂直【规律方法】1.异面直线的判定方法:(1)反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设出发,经过严格的推理,导出6矛盾,从而否定假设,肯定两条直线异面.(2)定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.2.点、线、面位置关系的判定,要注意几何模型的选取,常借助正方体为模型,以正方体为主线直观感知并认识空间点、线、面的位置关系.【训练2】(1)(2018·湘潭调研)下图中,G,N,M,H分别是正三棱柱(两底面为正三角形的直棱柱)的顶点或所在棱的中点,则表示直线GH,MN是异面直线的图形有()A.①③B.②③C.②④D.②③④(2)已知空间三条直线l,m,n,若l与m异面,且l与n异面,则()A.m与n异面B.m与n相交C.m与n平行D.m与n异面、相交、平行均有可能考点三异面直线所成的角角度1求异面直线所成的角或其三角函数值【例3-1】(一题多解)(2018·全国Ⅱ卷)在长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=3,则异面直线AD1与DB1所成角的余弦值为()A.15B.56C.55D.22角度2由异面直线所成角求其他量【例3-2】在四面体ABCD中,E,F分别是AB,CD的中点.若BD,AC所成的角为60°,且BD=AC=1,则EF的长为________.7【规律方法】用平移法求异面直线所成角的一般步骤:(1)作角——用平移法找(或作)出符合题意的角;(2)求角——转化为求一个三角形的内角,通过解三角形,求出角的大小.【训练3】(2019·杭州模拟)三棱锥A-BCD的所有棱长都相等,M,N分别是棱AD,BC的中点,则异面直线BM与AN所成角的余弦值为()A.13B.24C.33D.23【反思与感悟】1.主要题型的解题方法(1)要证明“线共面”或“点共面”可先由部分直线或点确定一个平面,再证其余直线或点也在这个平面内(即“纳入法”).(2)要证明“点共线”可将线看作两个平面的交线,只要证明这些点都是这两个平面的公共点,根据公理3可知这些点在交线上.2.判定空间两条直线是异面直线的方法(1)判定定理:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.(2)反证法:证明两线不可能平行、相交或证明两线不可能共面,从而可得两线异面.3.求两条异面直线所成角的大小,一般方法是通过平行移动直线,把异面问题转化为相交直线的夹角,体现了化归思想.【易错防范】1.异面直线易误解为“分别在两个不同平面内的两条直线为异面直线”,实质上两异面直线不能确定任何一个平面,因此异面直线既不平行,也不相交.82.直线与平面的位置关系在判断时最易忽视“线在面内”.【分层训练】【基础巩固题组】(建议用时:40分钟)一、选择题1.给出下列说法:①梯形的四个顶点共面;②三条平行直线共面;③有三个公共点的两个平面重合;④三条直线两两相交,可以确定1个或3个平面.其中正确的序号是()A.①B.①④C.②③D.③④2.已知a,b是异面直线,直线c平行于直线a,那么c与b()A.一定是异面直线B.一定是相交直线C.不可能是平行直线D.不可能是相交直线3.如果两条异面直线称为“一对”,那么在正方体的十二条棱中共有异面直线()A.12对B.24对C.36对D.48对4.下列命题中正确的个数为()①若△ABC在平面α外,它的三条边所在的直线分别交α于P,Q,R,则P,Q,R三点共线.②若三条直线a,b,c互相平行且分别交直线l于A,B,C三点,则这四条直线共面;③空间中不共面五个点一定能确定10个平面.A.0B.1C.2D.35.如图,在底面为正方形,侧棱垂直于底面的四棱柱ABCD-A1B1C1D1中,AA1=2AB=2,则异面直线A1B与AD1所成角的余弦值为()9A.15B.25C.35D.45二、填空题6.给出下列四个命题:①平面外的一条直线与这个平面最多有一个公共点;②若平面α内的一条直线a与平面β内的一条直线b相交,则α与β相交;③若一条直线和两条平行线都相交,则这三条直线共面;④若三条直线两两相交,则这三条直线共面.其中真命题的序号是________.7.(2019·西安模拟)如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.8.矩形ABCD中,AB=3,BC=1,将△ABC与△ADC沿AC所在的直线进行随意翻折,在翻折过程中直线AD与直线BC成的角范围(包含初始状态)为________.10三、解答题9.在正方体ABCD-A1B1C1D1中,(1)求AC与A1D所成角的大小;(2)若E,F分别为AB,AD的中点,求A1C1与EF所成角的大小.10.如图,在正方体ABCD-A1B1C1D1中,O为正方形ABCD的中心,H为直线B1D与平面ACD1的交点.求证:D1,H,O三点共线.【能力提升题组】(建议用时:20分钟)11.(2019·青岛质检)若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一11定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定12.(2019·珠海模拟)如图,在矩形ABCD中,AB=4,AD=2,P为边AB的中点,现将△DAP绕直线DP翻转至△DA′P处,若M为线段A′C的中点,则异面直线BM与PA′所成角的正切值为()A.12B.2C.14D.413.正方体ABCD-A1B1C1D1中,E为线段B1D1上的一个动点,则下列结论中正确的是________(填序号).①AC⊥BE;②B1E∥平面ABCD;12③三棱锥E-ABC的体积为定值;④B1E⊥BC1.14.如图,在四棱锥O-ABCD中,底面ABCD是边长为2的正方形,OA⊥底面ABCD,OA=2,M为OA的中点.(1)求四棱锥O-ABCD的体积;(2)求异面直线OC与MD所成角的正切值.【新高考创新预测】15.(多选题)如图,正方体ABCD-A1B1C1D1中,M,N分别为棱C1D1,C1C的中点,下列结论正确的有()13A.直线AM与CC1是相交直线B.直线AM与BN是平行直线C.直线BN与MB1是异面直线D.直线AM与DD1是异面直线
本文标题:专题7.2-空间点、直线、平面的位置关系---2020年高考数学一轮复习对点提分(文理科通用)(原卷
链接地址:https://www.777doc.com/doc-1510207 .html