您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 市场营销 > 小波变换的几个典型应用
仅供个人参考不得用于商业用途第六章小波变换的几个典型应用6.1小波变换与信号处理小波变换作为信号处理的一种手段,逐渐被越来越多领域的理论工作者和工程技术人员所重视和应用,并在许多应用中取得了显著的效果。同传统的处理方法相比,小波变换取得了质的飞跃,在信号处理方面具有更大的优势。比如小波变换可以用于电力负载信号的分析与处理,用于语音信号的分析、变换和综合,还可以检测噪声中的未知瞬态信号。本部分将举例说明。6.1.1小波变换在信号分析中的应用[例6-1]以含躁的三角波与正弦波的组合信号为例具体说如何利用小波分析来分析信号。已知信号的表达式为Forpersonaluseonlyinstudyandresearch;notforcommercialuse1000501)()3.0sin(50010005001)()3.0sin(5001)(ttbttttbttts应用db5小波对该信号进行7层分解。xiaobo0601.m01002003004005006007008009001000-4-3-2-10123456样本序号n幅值A图6-1含躁的三角波与正弦波混合信号波形分析:(1)在图6-2中,逼近信号a7是一个三角波。仅供个人参考不得用于商业用途(2)在图6-3中细节信号d1和d2是与噪声相关的,而d3(特别是d4)与正弦信号相关。01002003004005006007008009001000-101a701002003004005006007008009001000-202a601002003004005006007008009001000-202a501002003004005006007008009001000-202a401002003004005006007008009001000-505a301002003004005006007008009001000-505a201002003004005006007008009001000-505a1样本序号n图6-2小波分解后各层逼近信号01002003004005006007008009001000-101d701002003004005006007008009001000-101d601002003004005006007008009001000-101d501002003004005006007008009001000-202d401002003004005006007008009001000-202d301002003004005006007008009001000-202d201002003004005006007008009001000-505d1样本序号n图6-3小波分解后各层细节信号仅供个人参考不得用于商业用途6.1.2小波变换在信号降躁和压缩中的应用一、信号降躁1.工程中,有用信号一般是一些比较平稳的信号,噪声通常表现为高频信号。2.消躁处理的方法:首先对信号进行小波分解,由于噪声信号多包含在具有较高频率的细节中,我们可以利用门限、阈值等形式对分解所得的小波系数进行处理,然后对信号进行小波重构即可达到对信号的消躁目的。小波分析进行消躁处理的3种方法:(1)默认阈值消躁处理。该方法利用ddencmp生成信号的默认阈值,然后利用wdencmp函数进行消躁处理。(2)给定阈值消躁处理。在实际的消躁处理过程中,阈值往往可通过经验公式获得,且这种阈值比默认阈值的可信度高。在进行阈值量化处理时可利用函数wthresh。(3)强制消躁处理。该方法时将小波分解结构中的高频系数全部置为0,即滤掉所有高频部分,然后对信号进行小波重构。方法简单,消躁后信号比较平滑,但易丢失信号中的有用成分。小波阈值去噪方法是目前应用最为广泛的小波去噪方法之一。3.信号降噪的准则:1.光滑性:在大部分情况下,降噪后的信号应该至少和原信号具有同等的光滑性。2.相似性:降噪后的信号和原始信号的方差估计应该是最坏情况下的方差最小。4.一维信号消躁的步骤:(1)一维信号的小波分解。选择一个小波并确定分解的层次,然后进行分解计算。(2)小波分解高频系数的阈值量化。对各个分解尺度下的高频系数选择一个阈值进行软阈值量化处理。(3)一维小波重构。根据小波分解的最低层系数和各层高频系数进行一维小波重构。关键:如何选择阈值和进行阈值量化。在某种程度上,它关系到信号消躁的质量。5.消躁阈值选取规则硬阈值法:.,,,,0,jkjkjkjk软阈值法:,,,,,()(),0jkjkjkjkjksign仅供个人参考不得用于商业用途图(a)硬阈值图(b)软阈值图6-4估计小波系数的软阈值与硬阈值方法图6-4表明了软阈值和硬阈值法的区别,图中横坐标表示小波分解系数,纵坐标表示由阈值法得到的小波系数估计值ˆ,为阈值。可以看出,硬阈值法的ˆ函数在点处不连续,这会给重构信号带来震荡;软阈值法虽然ˆ函数连续性较好,但其导数并不连续,这就限制了它的进一步应用。并且当时,由软阈值法得出的估计值ˆ与小波系数存在着恒定的偏差。这些分析表明,软阈值法通常会使去噪后的信号平滑一些,但是也会丢掉某些特征;而硬阈值可以保留信号的特征,但是在平滑方面有所欠缺。一般来说,去噪中软阈值的作用会更多一些,但是到底选取哪种处理方法,还应视具体情况而定。6.应用一维小波分析进行信号消躁处理的MATLAB函数小波函数:wden和wdencmp[例6-2]利用小波分析对含躁正弦波进行消躁。xiaobo0602.m分析:(1)消躁后的信号大体上恢复了原信号的形状,并明显去除了噪声所引起的干扰。(2)恢复后的信号与原信号相比有明显的改变。主要原因是,在进行消躁处理的过程中所用的分析小波和细节系数阈值不恰当。仅供个人参考不得用于商业用途01002003004005006007008009001000-101样本序号n(原始信号)幅值A01002003004005006007008009001000-202样本序号n(含躁信号)幅值A01002003004005006007008009001000-202样本序号n(消躁信号)幅值A[例6-3]在电网电压值监测过程中,由于监测设备出现了一点故障,致使所采集到的信号受到噪声的污染。现在利用小波分析对污染信号进行消躁处理以恢复原始信号。0500100015000200400600原始信号幅值A0500100015000200400600强制消躁后的信号样本序号n幅值A0500100015000200400600默认阈值消躁后的信号样本序号n幅值A0500100015000200400600给定软阈值消躁后的信号样本序号n幅值A分析:仅供个人参考不得用于商业用途(1)强制消躁处理后信号比较光滑,但可能丢失有用信息。(2)默认阈值消躁和给定软阈值消躁这两种处理方法在实际中应用的更广泛。阈值函数图形如下:xiaobo0604.m050100-1-0.8-0.6-0.4-0.200.20.40.60.81原始信号样本序号n幅值A050100-1-0.8-0.6-0.4-0.200.20.40.60.81硬阈值信号样本序号n幅值A050100-0.8-0.6-0.4-0.200.20.40.6软阈值信号样本序号n幅值A二、信号压缩1.压缩依据:一个比较规则的信号是由一个数据量很小的低频系数和几个高频系数所组成的。这里对低频系数的选择有一个要求,即需要在一个合适的分解层上选择低频系数。2.压缩手段:小波分析和小波包分析两种手段。3.压缩步骤:(1)信号的小波(包)分解。(2)对高频系数进行阈值量化处理。对第1层到第N层的高频系数,均可选择不同的阈值,并且用硬阈值进行系数的量化。(3)对量化后的系数进行小波(包)重构。4.两种比较有效的信号压缩方法:第一种方法:对信号进行小波尺度的扩展,并且保留绝对值最大的系数。在这种情况下,可以选择全局阈值,此时仅需输入一个参数即可。第二种方法:根据分解后各层的效果来确定某一层的阈值,且每一层的阈值可以互不相同。[例6-4]利用小波分析对给定信号进行压缩处理。xiaobo0605.m仅供个人参考不得用于商业用途0100200300400500600100200300400500原始信号样本序号n幅值A0100200300400500600100200300400500压缩后的信号样本序号n幅值A6.2小波变换在电力负载信号的应用电力系统在线检测信号含有大量的现场背景噪声,给传统方式的数据采集与故障诊断带来很大的困难。将以处理瞬态信号、含宽带噪声信号等见长的小波分析应用于电力系统在线监测是大有前途的。本小节的测量数据是从一个复杂的设备上采集的电力负载信号,每分钟采集一个样本,持续了5个星期,总共50400个数据样本。测量数据受到传感器误差和状态噪声两种噪声的影响。本小节将分析其中的两段数据,其中第一段是上午12:30至下午1:00间采集的样本,由于这段时间处于用电高峰,因此数据很复杂;第二段是下半夜采集的样本,数据比较简单。一、信号分解[例6-5]利用小波分解分析第一段数据的信号成分。xiaobo0606.m仅供个人参考不得用于商业用途36003610362036303640365036603670368036903700295300305310315320325330335340345样本序号n幅值A图1360036503700250300350a5360036503700250300350a4360036503700250300350a3360036503700250300350a2360036503700250300350a1样本序号n360036503700-20020d5360036503700-20020d4360036503700-10010d3360036503700-505d2360036503700-505d1样本序号n图2分析:第一段电力载波信号如图1所示,利用db3小波对其进行5层小波分解,得到逼近信号和细节信号如图2所示。可以看出:仅供个人参考不得用于商业用途(1)细节信号d1和d2的值较小,可以认为是由传感器和状态噪声的高频分量引起的局部干扰;(2)细节信号d4包含了3个相连的主要信号模式,它最接近于原始数据的曲线;(3)细节信号d5含有的信息不多,因此第4层贡献最大,它提取了原始数据曲线的形状。二、暂态信号检测为保证电力系统的安全可靠运行,必须对电力设备进行状态监测根据电力信号来判别其运行的状态。电力系统暂态故障信号往往在故障时刻发生突变,若能捕获设备故障信息突变时刻和大小,有利于在故障初期及早采取措施使系统恢复正常,这对提高设备运行可靠性具有重要意义。[例6-6]利用小波分解分析检测第二段信号的突变点成分。xiaobo0607.m156015801600162016401660168017001720210220230240250260270280290300310样本序号n幅值A分析:利用db3小波对其进行5层分解,得到逼近信号和细节信号如图所示。可以看出:由细节信号d2可以检测突变点位置t=1625,由细节信号d1也能隐约看出t=1600处的突变点。仅供个人参考不得用于商业用途15501600165017001750200250300a515501600165017001750200250300a415501600165017001750200300400a315501600165017001750200300400a215501600165017001750200300400a1样本序号n15501600165017001750-10010d515501600165017001750-505d415501600165017001750-505d315501600165017001750-20020d215501600165017001750-5
本文标题:小波变换的几个典型应用
链接地址:https://www.777doc.com/doc-1558868 .html