您好,欢迎访问三七文档
聚砜膜材料的改性及应用汇报人:郑久汉Contents312聚砜膜材料简介聚砜膜材料的改性聚砜膜材料的应用4参考文献良好的化学稳定性、绝缘性、耐热性、耐水性、尺寸稳定性、成膜性好、机械强度高。聚砜膜材料的疏水性能常导致蛋白质在膜表面大量吸附,造成膜的污染很严重。聚砜膜材料广泛应用于超滤、微滤、反渗透、气体分离、血液透析等方面。分子式优点缺点应用聚砜膜材料简介PSF简写改性方法主链功能化等离子体处理涂覆两性亲水性聚合物共混添加无机纳米粒子共混聚砜膜材料的改性环氧开环反应接枝两性亲水基团氨基和羟基SynthesisrouteofPSF-g-PNMG(n1,n2arethenumberofrepeatunitsofPSFandPGMA,respectively).Q.Shiet.al*.JournalofMembraneScience444(2013)50–59.TheweightratiosofPSF:PSF-g-PNMGwere10:0,9:1,8:2and7:3.TheobtainedmembranesarerepresentedasPSF,PSF-g-PNMG1,PSF-g-PNMG2,PSF-g-PNMG3,respectively.氯甲基化引入ATRP反应的活性位点接枝环氧基团FESEMimages(100,000)oftopviewsofthemembranes:PSF(a),PSF-g-PNMG1(b),PSF-g-PNMG2(c)andPSF-g-PNMG3(d).随着铸膜液中PSF-g-PNMG的比例增加,膜表面孔的裂缝宽度增加。WCAimagesof(a)aPSFmembraneand(b)aPSF-g-PNMG3membrane.PSF原膜接触角在两分钟内从90.6o下降到87.2o,共混PSF-g-PNMG3膜接触角在15秒内从86o降低到29o,接触角下降快速的原因是由于含有高亲水性表面和多孔微观结构。Time-dependentflux(a)andtherelativefluxrecoveryrate(RFR)(b)(W:purewaterflux,B:thePBS/BSAsolutionflux;1,2,3representthetimesofcycles).PSF-g-PNMG膜的纯水和BSA溶液的通量比PSF膜的通量大,随着PSF-g-PNMG的含量减少,通量也减少。这是因为随着铸膜液中PSF-g-PNMG含量增加,膜的孔径越大和膜裂缝的宽度增大。截留BSA溶液后膜的通量都下降。通量的相对恢复率PSF膜最小,PSF-g-PNMG3共混膜最大,超过90%。这是因为膜表面葡萄糖甲胺基团形成亲水性层。Dong-GyunKim,et.al*J.Mater.Chem,2012,22,8654以OBPS为引发剂,溴化亚铜为催化剂,运用ATRP法合成星状抗污染性涂覆SPM材料。以EBIB为引发剂合成线状LPM材料。混合物的组成SEMmicrographsofthemembranesurfaces:(a)PSfmembrane,(b)SPM15-coatedmembrane,and(c)LPM17-coatedmembrane.聚砜原膜和涂覆不同材料的膜相比,膜表面孔径减小。Timedependenceofwaterpermeationfluxvariationsduringmembranefiltration:(a)fluxbehaviorduringBSAsolutionfiltrationand(b)fluxbehaviorafterwashingwithH2Oat30minand60min,andsummaryofcorrespondingfluxpropertyvalues(fluxrecoveryratio(FRR))表面涂覆SPM15材料的膜通量下降比例和通量恢复率都是最好的,表面涂覆SPM15材料的膜抗污染性最好。Schematicillustrationoffouling-resistantsurfacesof(a)SPM15-and(b)LPM17-coatedmembranes.合成的聚合物在膜的表面会形成PEG层,PEG具有很好的亲水性,这样会形成空间位阻,增加蛋白质与膜表面之间的结合力,从而阻止蛋白质吸附在膜表面,合成的SPM15中PEG的含量比LPM17高,因而SPM15的抗污染性最好。NovelpolysulfonehybridultrafiltrationmembranepreparedwithTiO2-g-HEMAanditsantifoulingcharacteristics混合物的组成G.L.Zhang*etal.JournalofMembraneScience436(2013)163–173运用ATRP反应在纳米二氧化钛上接枝了亲水性的聚合物HEMA。TEMmicrographsofTiO2nanoparticlesdispersedinEtOH:TiO2(a,b)andTiO2-g-HEMA(c,d)没有修饰的二氧化钛团聚较严重,颗粒很难分散,经过HEMA修饰的二氧化钛没有发现大面积的团聚。WaterfluxrecoveryofthenanoparticlesblendedPSFmembranesafterBSA(a)andEPS(b)foulings通过BSA和EPS抗污染性实验可知添加经过HEMA修饰的二氧化钛的恢复率最好,最佳的添加量为2.0%。当添加量为3.0%时,抗污染的恢复率下降,这是因为纳米颗粒的聚集堵塞了膜孔。SEMcross-sectionsofMIL-101-PSFmembranesbasedon400mgofPSFwithdifferentloadingsofMIL-101:(a)8wt%(d=55mm),(b)16wt%(d=59mm)and(c)24wt%(d=60mm);distheaveragemembranethickness.HaroldB.TanhJeazet*et.al,Chem.Commun.,2012,48,2140–2142.MIL-101颗粒很好的分散在膜的界面孔内,当负载量达到24%时,MIL-101颗粒容易形成聚集。聚砜膜材料的应用O2/N2permeabilityandseparationperformanceofpurePSFandMIL-101-PSFmembraneswithdifferentMILwt%loadings氮气和氧气的通量都随着负载MIL-101量的增加而增大,但是对于氧气和氮气的选择率基本不变。当负载MIL-101的量为24%时,氧气的通量是纯PSF膜的四倍MartinPumera*et.al.Chem.Commun.2014,50,15849—15851.Depictionof(A)polymerencapsulationofthecalciumcarbidegranuleandoperationoftheacetylene-poweredcapsulemotorinwaterand(B)thereactionschemeofcalciumcarbideinaqueousmedia.通过相转化沉淀将PSF膜包覆碳化钙形成胶囊,用水作为反应物,在界面处产生乙炔气体,气体从胶囊内排出从而形成推动力。设计了一种不同于传统用氢气或者氧气作为无燃料自主推进的动力。TrackingimageforthepathofaPSf–CaC2capsulemotorat(A)t=0sand(B)t=16sonthesurfaceofwaterwith0.05%SDS.Translationalmotionwasobserved.Arrowindicatestheinitialpositionofthecapsulemotor.Scalebarindicates1cm.碳化钙胶囊的初始位置16s内胶囊移动的位移反应产生的气体已经从胶囊中释放的气体,增加了胶囊的浮力,使得胶囊一直浮在水面上,这也使得胶囊在水和空气的界面上一直做平动。AveragespeedprofilesofthePSf–CaC2capsulemotorwithDt=1s.Atotalpathlengthof37cmwastravelledandtheaveragespeedwas2.3cms-1.总的移动长度是37cm,平均反应速度是2.3cm·s-1。在0~9s内移动速度在2~4cm·s-1之间,在9~16s内移动速度在1~2cm·s-1之间,这是由于碳化钙原料的消耗,从而导致生成的乙炔气体的量减少,推动力下降,故而速度降低。参考文献[1]D.RanaandT.Matsuura,SurfaceModificationsforAntifoulingMembranes,Chem.Rev.2010,110,2448–2471.[2]NorhanNady,MauriceC.R.Franssen,HanZuilhof,MohamedS.MohyEldin,RemkoBoom,KarinSchroën,Modificationmethodsforpoly(arylsulfone)membranes:Amini-reviewfocusingonsurfacemodification,Desalination,275(2011)1–9.[3]QiangShi,Jian-Qiang,Meng,Rui-SongXu,Xi-LanDu,Yu-FengZhang,Synthesisofhydrophilicpolysulfonemembraneshavingantifoulingandboronadsorptionpropertiesviablendingwithanamphiphilicgraftglycopolymer,JournalofMembraneScience444(2013)50–59.[4]Dong-GyunKim,HyoKang,SungsooHanb,Jong-ChanLee,Theincreaseofantifoulingpropertiesofultrafiltrationmembranecoatedbystar-shapedpolymers,J.Mater.Chem.2012,22,8654–8661.[5]GuoliangZhang,ShufeiLu,LiangZhang,QinMeng,ChongShen,JiweiZhang,NovepolysulfonehybridultrafiltrationmembranepreparedwithTiO2-g-HEMAanditsantifoulingcharacteristics,JournalofMembraneScience436(2013)163–173[6]HaroldB,TanhJeazet,ClaudiaStaudt,ChristophJaniak,AmethodforincreasingpermeabilityinO2/N2separationwithmixed-matrixmembranesmadeofwater-stableMIL-101andpolysulfone,Chem.Commun.,2012,48,2140–2142.[7]JamesGuoShengMoo,HongWang,MartinPumera,Acetylenebubble-poweredautonomouscapsules:towardsinsitufuel,Chem.Commun,2014,50,15849.参考文献
本文标题:高分子膜材料的改性
链接地址:https://www.777doc.com/doc-1565692 .html