您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 建筑材料 > 第二章建筑装饰材料的基本性质
建筑装饰材料第二章建筑装饰材料的基本性质建筑材料的基本性质第一节材料的基本物理性质第二节材料的力学性质第三节材料与水有关的性质第四节材料的装饰性和耐久性2.1材料的物理性质一、材料的密度、表观密度、堆积密度(1)密度密度是指材料在绝对密实状态下,单位体积的质量。用下式表示:(1-1)式中ρ——密度,g/cm3;m——材料在干燥状态的质量,g;v——材料在绝对密实状态下的体积,cm3。mV2.1材料的物理性质材料在绝对密实状态下的体积是指不包括孔隙在内的体积。除了钢材、玻璃等少数材料外,绝大多数材料内部都存在一些孔隙。因此,在测定有孔隙的材料密度时,应把材料磨成细粉,来测定其在绝对密实状态下的体积。材料磨得越细,测得的密度值越精确。2.1材料的物理性质(2)表观密度表观密度是指材料在自然状态下,单位体积的质量。用下式表示:(1-2)式中——表观密度,g/cm3或kg/m3;——材料的质量,g或kg;——材料在自然状态下的体积,cm3或m3。000mv00v0m2.1材料的物理性质材料在自然状态下的体积又称表观体积,是指包含材料内部孔隙在内的体积。几何形状规则的材料,可直接按外形尺寸计算出表观体积;几何形状不规则的材料,可用排液法测量其表观体积。当材料含有水分时,其质量和体积将发生变化,影响材料的表观密度,故在测定表观密度时,应注明其含水情况。一般情况下,材料的表观密度是指在在烘干状态下的表观密度,又称为干表观密度。2.1材料的物理性质(3)堆积密度堆积密度是指粉状(水泥、石灰等)或散粒材料(砂子、石子等)在堆积状态下,单位体积的质量。用下式表示:(1-3)式中——堆积密度,kg/m3;——材料的质量,kg;——材料的堆积体积,m3。'0'0mv'0'ovm2.1材料的物理性质材料的堆积体积包含了颗粒内部的孔隙和颗粒之间的空隙。测定材料的堆积密度时,按规定的方法将散粒材料装入一定容积的容器中,材料质量是指填充在容器内的材料质量,材料的堆积体积则为容器的容积。在建筑工程中,计算材料的用量和构件的自重,进行配料计算以及确定材料的堆放空间时,经常要用到密度、表观密度和堆积密度等数据。表1-1列举了常用建筑材料的密度、表观密度和堆积密度。2.1材料的物理性质表1-1常用建筑材料的密度、表观密度和堆积密度材料名称密度/(g/cm3)表观密度/(kg/m3)堆积密度/(kg/m3)建筑钢材7.857850—普通混凝土—2100~2600—烧结普通砖2.50~2.701600~1900—花岗岩2.70~3.02500~2900—碎石(石灰岩)2.48~2.762300~27001400~1700砂2.50~2.60—1450~1650粉煤灰1.95~2.40—550~800木材1.55~1.60400~800水泥2.8~3.1—1200~1300普通玻璃2.45~2.552450~2550—铝合金2.7~2.92700~2900—2.1材料的物理性质二、材料的孔隙率和密实度孔隙率是指在材料体积内,孔隙体积所占的比例,以P表示。可按下式计算:(1-4)孔隙率的大小直接反映了材料的致密程度。孔隙率越小,说明材料越密实。同一材料:密实度+孔隙率=1.材料内部孔隙可分为连通孔隙和封闭孔隙两种构造。连通孔隙不仅彼此连通而且与外界相通,封闭孔隙不仅彼此封闭且与外界相隔绝。孔隙按其孔径尺寸大小可分为细小孔隙和粗大孔隙。材料的许多性能,如表观密度、强度、吸湿性、导热性、耐磨性、耐久性等,都与材料孔隙率的大小和孔隙特征有关。0000p=1(1)100%vvvvv2.1材料的物理性质三、材料的空隙率和填充度散粒状材料,在一定的疏松堆放状态下,颗粒之间空隙的体积,占堆积体积的百分率,称为空隙率.空隙率用P′可写作下式:空隙率和填充度的大小,都能反映出散粒材料颗粒之间相互填充的致密状态。上述几项基本的物理参数,既是判别、推断或改进材料性能性质的重要指标,又是在材料的估算、贮运、验收和配料等方面,直接使用的数据。2.1材料的物理性质四、导热性导热系数越小,材料传导热量的能力就越差,其保温隔热性能越好。通常把0.23W/(mK)的材料叫做绝热材料。材料的导热系数与材料的成分、孔隙构造、含水率等因素有关。一般金属材料、无机材料的导热系数分别大于非金属材料、有机材料。材料孔隙率越大,导热系数越小;在孔隙率相同的情况下,材料内部细小孔隙、封闭孔隙越多,导热系数越小。材料含水或含冰时,会使导热系数急剧增加,这是因为空气的导热系数仅为0.023W/(mK),而水的导热系数为0.58W/(mK),冰的导热系数为2.33W/(mK)。因此,保温绝热材料在使用和保管过程中应注意保持干燥,以避免吸收水分降低保温效果。2.1材料的物理性质四、温度变形性材料的温度变形性,是指温度升高或降低时材料的体积变化。绝大多数建筑材料在温度升高时体积膨胀,温度下降时体积收缩。这种变化表现在单向尺寸时,为线膨胀或线收缩。材料的单向线膨胀量或线收缩量计算公式为:(1-8)式中——线膨胀或线收缩量,mm或cm;——材料升温或降温前后的温度差,K;——材料在常温下的平均线膨胀系数,1/K;——材料原来的长度,mm或cm。21()LTTL21()LTTL2.1材料的物理性质五、材料的燃烧性能近年来,我国发生的重大伤亡性火灾,几乎都与建筑装修和建筑装饰材料有关。因此,在选择建筑装饰材料时,对材料的燃烧性能应给予足够的重视。1.建筑装饰材料燃烧所产生的破坏和危害①燃烧作用在建筑物发生火灾时,燃烧可将金属结构红软、熔化,可将水泥混凝土脱水粉化及爆裂脱落,可将可燃材料烧成灰烬,可使建筑物开裂破坏、坠落坍塌、装修报废等,同时燃烧产生的高温作用对人也有巨大的危害。②发烟作用材料燃烧时,尤其是有机材料燃烧时,会产生大量的浓烟。浓烟会使人迷失方向,且造成心理恐惧,妨碍及时逃逸和救援。③毒害作用部分建筑装饰材料,尤其是有机材料,燃烧时会产生剧毒气体,这种气体可在几秒至几十秒内,使人窒息而死亡。2.1材料的物理性质2.建筑材料的燃烧性能分级建筑材料按其燃烧性能分为四个等级,见表1-2。表1-2建筑材料的燃烧性能分级等级燃烧性能燃烧特征A不燃性在空气中受到火烧或高温作用时不起火、不燃烧、不碳化的材料,如金属材料及无机矿物材料等B1难燃性在空气中受到火烧或高温作用时难起火、难燃烧、难碳化,当离开火源后燃烧或微燃立即停止的材料,如沥青混凝土、水泥刨花板等B2可燃性在空气中受到火烧或高温作用时立即起火或微燃,且离开火源后仍能继续燃烧或微燃的材料,如木材、部分塑料制品等B3易燃性在空气中受到火烧或高温作用时立即起火,并迅速燃烧,且离开火源后仍能继续燃烧的材料,如部分未经阻燃处理的塑料、纤维织物等2.1材料的物理性质在选用建筑装饰材料时,应优先考虑采用不燃或难燃的材料。对有机建筑装饰材料,应考虑其阻燃性及其阻燃剂的种类和特性。如果必须采用可燃型的建筑材料,应采取相应的消防措施。(4)材料的耐火性材料的耐火性是指材料抵抗高温或火的作用,保持其原有性质的能力。金属材料、玻璃等虽属于不燃性材料,但在高温或火的作用下在短时间内就会变形、熔融,因而不属于耐火材料。建筑材料或构件的耐火性常用耐火极限来表示。耐火极限是指按规定方法,从材料受到火的作用起,直到材料失去支持能力或完整性被破坏或失去隔火作用的时间,以h(小时)或min(分钟)计。2.1材料的物理性质六、材料的声学性质声音是靠振动的声波来传播的,当声波到达材料表面时出产生三种现象:反射、透射、吸收。反射容易使建筑物室内产生噪音或杂音,影响室内音响效果;透射容易对相邻空间产生噪音干扰,影响室内环境的安静。通常当建筑物室内的声音大于50dB,就应该考虑采取措施;声音大于120dB,将危害人体健康。因此,在建筑装饰工程中,应特别注意材料的声学性能,以便于给人们提供一个安全、舒适的工作和生活环境。(1)材料的吸声性吸声性是指材料吸收声波的能力。吸声性的大小用吸声系数表示。2.1材料的物理性质当声波传播到材料表面时,一部分被反射,另一部分穿透材料,其余的部分则传递给材料,在材料的孔隙中引起空气分子与孔壁的摩擦和粘滞阻力,使相当一部分的声能转化为热能而被材料吸收掉。当声波遇到材料表面时,被材料吸收的声能与全部入射声能之比,称为材料的吸声系数。用公式表示如下:(1-10)材料的吸声系数越大,吸声效果越好。材料的吸声性能除与声波的入射方向有关外,还与声波的频率有关。同一种材料,对于不同频率的吸声系数不同,通常取125Hz、250Hz、500Hz、1000Hz、2000Hz、4000Hz等六个频率的吸声系数来表示材料吸声的频率特征。凡6个频率的平均吸声系数大于0.2的材料,称为吸声材料。0EE2.1材料的物理性质(2)材料的隔声性声波在建筑结构中的传播主要通过空气和固体来实现,因而隔声可分为隔绝空气声(通过空气传播的声音)和隔绝固体声(通过固体的撞击或振动传播的声音)两种。隔绝空气声,主要服从声学中的“质量定律”,即材料的表观密度越大,质量越大,隔声性能越好。因此,应选用密度大的材料作为隔空气声材料,如混凝土、实心砖、钢板等。如采用轻质材料或薄壁材料,则需辅以多孔吸声材料或采用夹层结构,如夹层玻璃就是一种很好的隔空气声材料。弹性材料,如地毯、木板、橡胶片等具有较高的隔固体声能力。2.1材料的物理性质六、材料的光学性质当光线照射在材料表面上时,一部分被反射,一部分被吸收,一部分透过。根据能量守恒定律,这三部分光通量之和等于入射光通量,通常将这三部分光通量分别与入射光通量的比值称为光的反射比、吸收比和透射比。材料对光波产生的这些效应,在建筑装饰中会带来不同的装饰效果。(1)光的反射当光线照射在光滑的材料表面时,会产生镜面发射,使材料具有较强的光泽;当光线照射在粗糙的材料表面时,使反射光线呈现无序传播,会产生漫反射,使材料表现出较弱的光泽。在装饰工程中往往采用光泽较强的材料,使建筑外观显得光亮和绚丽多彩,使室内显得宽敞明亮。2.1材料的物理性质(2)光的透射光的透射又称为折射,光线在透过材料的前后,在材料表面处会产生传播方向的转折。材料的透射比越大,表明材料的透光性越好。如2mm厚的普通平板玻璃的透射比可达到88%。当材料表面光滑且两表面为平行面时,光线束透过材料只产生整体转折,不会产生各部分光线间的相对位移(见图1-1a)。此时,材料一侧景物所散发的光线在到达另一侧时不会产生畸变,使景象完整地透过材料,这种现象称之为透视。大多数建筑玻璃属于透视玻璃。当透光性材料内部不均匀、表面不光滑或两表面不平行时,入射光束在透过材料后就会产生相对位移(见图1-1b),使材料一侧景物的光线到达另一侧后不能正确地反映出原景象,这种现象称为透光不透视。在装饰工程中根据使用功能的不同要求也经常采用透光不透视材料,如磨砂玻璃、压花玻璃等。2.1材料的物理性质(a)图1-1表面状态不同材料的透光折射性质(b)(a)材料的透视原理;材料的透光不透视原理(b)2.1材料的物理性质(3)光的吸收光线在透过材料的过程中,材料能够有选择地吸收部分波长的能量,这种现象称为光的吸收。材料对光吸收的性能在建筑装饰等方面具有广阔的应用前景。例如:吸热玻璃就是通过添加某些特殊氧化物,使其选择吸收阳光中携带热量最多的红外线,并将这些热量向外散发,可保持室内既有良好的采光性能,又不会产生大量热量;有些特殊玻璃还会通过吸收大量光能,将其转变为电能、化学能等;太阳能热水器就是利用吸热涂料等材料的吸热效果来使水温升高的。返回2.2材料的力学性质一、材料的强度与比强度(1)强度材料在外力(荷载)作用下抵抗破坏的能力称为强度。当材料承受外力作用时,内部产生应力,随着外力增大,内部应力也相应增大。直到材料不能够再承受时,材料即破坏,此时材料所承受的极限应力值就是材料的强度。根据所受外力的作用方式不同,材料强度有抗压强度、抗拉强度、抗弯强度及抗剪强度等。各种强度指标均要根据国家规定的标准方法来测定。常用建筑材料的强度值
本文标题:第二章建筑装饰材料的基本性质
链接地址:https://www.777doc.com/doc-157377 .html