您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 其它办公文档 > 化工自动化及仪表第五章
第五章执行器华东理工大学信息学院自动化系控制装置执行器过程检测元件、变送器r(t)比较机构-e(t)u(t)q(t)y(t)f(t)c(t)扰动广义对象被控变量测量值控制器设定值简单控制系统构成回顾:简单控制系统的方块图本章内容5.0概述5.1执行机构5.2控制阀5.4控制阀口径的确定5.3气动薄膜控制阀的流量特性5.5阀门定位器5.6气动薄膜控制阀的选用5.7数字阀和智能控制阀5.0概述作用:接收控制器输出的控制信号,改变操纵变量,使生产过程按预定要求正常进行。控制装置执行器过程检测元件、变送器r(t)比较机构-e(t)u(t)q(t)y(t)f(t)c(t)扰动广义对象被控变量测量值控制器设定值简单控制系统的方块图组成:执行机构和调节机构执行机构:执行机构是指根据控制器控制信号产生推力或位移的装置。调节机构:调节机构是根据执行机构输出信号去改变能量或物料输送量的装置,通常指控制阀。现场有时就将执行器称为控制阀。分类:液动电动气动推力最大,但较笨重,现很少使用液动:电动执行器的执行机构和调节机构是分开的两部分,其执行机构有角行程和直行程两种,都是以两相交流电机为动力的位置伺服机构,作用是将输入的直流电流信号线性地转换为位移量。电动:安全防爆性能较差,电机动作不够迅速,在行程受阻或阀杆被轧住时电机易受损。气动执行器的执行机构和调节机构是统一的整体,其执行机构有薄膜式和活塞式两类。气动:活塞式:行程长,适用于要求有较大推力的场合薄膜式:行程较小,只能直接带动阀杆。化工厂一般均采用薄膜式。是用压缩空气为能源,结构简单、动作可靠、平稳、输出推动力大、维修方便、防火防爆、价格较低、广泛应用于化工、炼油生产。气动:5.1执行机构气动执行器的执行机构和调节机构是统一的整体。5.1.1气动执行机构气动执行机构主要分为薄膜式和活塞式。薄膜式活塞式正作用形式:信号压力增大,推杆向下。薄膜式反作用形式:信号压力增大,推杆向上。这种执行机构的输出位移与输入气压信号成比例关系。当压力与弹簧的反作用力平衡时,推杆稳定在某一位置,信号压力越大,推杆的位移量也越大。(推杆的位移即为执行机构的直线输出位移,也称行程。)形式有传统结构和改进结构。•传统型国产正作用式执行机构称为ZMA型,反作用式执行机构称为ZMB型。信号压力通过波纹膜片的上方(正作用式)或下方(反作用式)进入气室。较大口径的控制阀都是采用正作用形式的执行机构。•侧装式气动执行机构(增力式执行机构)特点:薄膜式膜头装在支架的侧面•轻型气动执行机构特点:结构上采用多根弹簧,弹簧内装在薄膜气室中。由于它的特殊构造,使得轻型气动执行机构具有结构紧凑、重量轻、高度降低、输出推力大的特点。5.1.2电动执行机构在防爆要求不高且无合适气源的情况下可以使用电动执行器。电动执行机构是由电动机带动减速装置,在电信号的作用下产生直线位移和角位移。电动执行机构一般可以分为直行程、角行程、多转式三种。直行程电动执行机构的输出轴输出大小不同的直线位移来推动不同类型的阀门,通常用来推动单座、双座、三通、套筒等形式的控制阀。角行程电动执行机构的输出轴输出角位移,角度范围小于360o,根据大小不同推动不同的阀门,通常用来推动蝶阀、球阀、偏心旋转阀等转角式控制阀。多转式电动执行机构的输出轴输出各种大小不等的有效圈数,位移量较大,用于推动闸阀或由执行电动机带动旋转式的调节机构,如各种泵等。5.2控制阀5.2.1控制阀(调节阀)结构调节阀(是一个局部阻力可以改变的节流元件)由阀芯与阀座构成。通过阀芯在阀体内移动,改变阀芯与阀座之间的流通面积,从而改变被调介质的流量,达到调节工艺参数的目的。正作用:阀芯向下。阀杆向下,流通面积减少。反作用:阀芯向上。阀杆向下,流通面积增大。执行器如气动薄膜控制阀的执行机构和调节机构组合起来可以实现气开和气关式两种调节。气动控制阀的气开、气关特性气关阀:供气量越大,阀门开度越小,而在失气时则全开,称FO型。Δp(kp)1002020100开度开度全开全开Δp(kp)气关阀气开阀全关全关气开阀:供气量越大,阀门开度越大,而在失气时则全关,称FC型。5.2.2控制阀类型直通单座阀、直通双座阀直通单座阀直通双座阀结构特点:只有一个阀芯有两个阀芯直通单座阀直通双座阀优点:泄漏量小不平衡推力较小缺点:阀芯受到的不平衡推力大泄漏量大适用:压差较小、泄漏量压差较大、对泄较小的场合漏量要求不高的场合隔膜控制阀:该种阀门用耐腐蚀衬里的阀体和耐腐蚀隔膜代替阀芯与阀座组件。该类阀耐腐蚀性强,适用于对强腐蚀性介质流量的控制。结构简单,流路阻力小,流量系数大,无泄漏量。但由于他自身的结构特点,可耐的压力、温度都较低,一般适用于压力低于1MPa、温度低于150℃的情况。三通控制阀:三通控制阀分为合流阀与分流阀。合流阀是两路流体合为一路,分流阀是一路流体分为两路。用于流体总量不变,两路流体需要调整的场合。角型控制阀、套筒型控制阀等5.3气动薄膜控制阀的流量特性定义:流量特性是指流过阀门的调节介质的相对流量与阀杆的相对行程(阀门的相对开度)之间的关系。数学表达式maxmaxqlfql表示控制阀某一开度的流量与全开时流量之比,称为相对流量。max/qqmax/ll类型:理想特性、工作特性表示控制阀某一开度时的阀杆行程与全开时阀杆全行程之比,称为相对开度。5.3.1理想流量特性定义:控制阀的前后压差不变时得到的流量特性。特点:完全取决于阀的结构参数类型:线性、对数、快开控制阀的可调比理想可调比-控制阀前后压差不变时的可调比,取决于阀芯结构实际可调比-考虑阀前后压差变化因素时的可调比,取决于阀芯结构和配管状况maxminqRq可调比(可调范围):控制阀所能控制的最大流量qmax与最小流量qmin之比。用R表示,它反映了控制阀调节能力的大小。应注意最小流量与泄漏量的区别:——控制阀可调的最小流量,为(2~4%)泄漏量——控制阀全关时的泄漏量,为(0.01~0.1%)qminqminqmaxqmax线性阀:是指控制阀的相对流量与相对开度成线性关系。换句话说,即阀杆单位行程变化所引起的相对流量变化是常数。maxmaxqlkCqlmaxmaxqdqkldl积分后为线性流量特性的控制阀,其放大系数是常数;流量的相对变化是不同的-小开度时,流量的相对变化大;-大开度时,流量的相对变化小。控制阀的特点:-小开度时,因灵敏度高而不易控制,甚至产生振荡;-大开度时调节缓慢,不够及时。对数阀:是指单位行程变化所引起的相对流量变化与此点的相对流量成正比关系。max(1)maxllqRqmaxmaxmaxqdqqkqldl两边取对数为可得积分表达式为maxmaxln(1)lnqlRql对数(等百分比)流量特性的控制阀,其放大系数随阀门开度的增加而增大。流量的相对变化是一个常数(百分比相等)控制阀的特点:-小开度时流量小,流量变化也小,调节缓和平稳;-大开度时流量大,流量的变化也大,调节灵敏有效。快开流量特性该流量特性在开度较小时流量变化很快,随着开度的增大,流量很快就几乎达到最大。此后再增加开度,流量变化非常小,故称为快开特性。快开特性控制阀适用于迅速启闭的切断阀或双位控制系统。5.3.2工作流量特性定义:实际上控制阀的前后压差是变化的,此时得到的控制阀的相对流量与相对开度之间的关系称为工作流量特性。ΔpfΔpOIΔpΔpvΔpfΔpqqΔpv串联管道情况串联管道控制阀压差变化配管系数S:控制阀全开时,控制阀上压差△pv与系统总压差△p之比。/VSppS=1时,系统的总压差全部降在控制阀上,工作流量特性就表现为理想流量特性。maxmaxmin()VfqSppqRq管(2)流量特性畸变(0.3S0.6)S减小会带来的不良后果:(1)选择原则:一般希望S的取值范围:0.3S0.6:S0.6:认为工作特性与理想特性相同。S0.3(流量特性畸变很大):节能运行,可以进行静态非线性补偿在实际使用中,S选得过大或过小都不合适。S选得过大,阀上压降很大,消耗能量过多;S选得过小,则对调节不利。配管系数S的选择:5.3.3动态特性气动薄膜控制阀膜头是一个空间(气容),从控制器到气动薄膜控制阀膜头间的引压管线有气容和气阻,故管线和膜头是一个由气阻和气容组成的一阶滞后环节,其时间常数的大小取决于气阻和气容。当信号管线太长或太粗,膜头气室太大时,气阻气容就大,控制阀的时间常数大。这样增加了系统广义对象容量滞后,对控制不利。通常减小时间常数的措施有:•尽量缩短引压管线的长度。•选用合适口径的气动管线。•加装传输滞后补偿器。5.4控制阀口径的确定依据:流通能力,用流量系数KV表示。因为:流量系数KV直接反映了流体通过控制阀的最大能力。流通能力定义:控制阀全开时,阀前后压差为100kPa、流体密度为1g/cm2时,每小时流经控制阀的流量值(m3/h)控制阀口径的确定需经过以下步骤:•根据生产能力、设备负荷确定出最大流量qvmax。•根据所选的流量特性及系统特点选定S值(S=ΔPv/ΔP),然后求出计算压差(即阀门全开时的压差)。•根据流通能力计算公式,求得最大流量时的Kvmax。•根据已求得的Kvmax,在所选用的产品型号的标准系列中选取大于Kvmax并最接近的Kv值,从而选取阀门口径。•验证控制阀开度和可调比,一般要求最大流量时阀开度不超过90%,最小流量时阀开度不小于10%。•验证合格后,根据Kv确定控制阀的公称通径和阀座直径。5.5阀门定位器功能:接受控制器的输出信号,然后将该信号成比例地输出到执行机构,当阀杆移动以后,其位移量又通过机械装置负反馈作用于阀门定位器,它与执行机构组成一个闭环系统。采用阀门定位器,可以增加执行机构的输出功率,改善控制阀的性能。目前较多使用电动控制器,控制阀较多使用气动控制阀作用:电气转换和阀门定位器输入信号:电动控制器的输出电流输出信号:标准气动信号,操纵气动薄膜控制阀原理:力矩平衡原理5.5.1电-气阀门定位器由转换组件、气路组件、反馈组件和接线盒组件等部分组成当输入信号增大时放大器输出气压增大阀杆下移,通过反馈拉杆转换成反馈轴和反馈压板的角位移反馈弹簧拉伸主杠杆顺时针转动喷嘴背压增大杠杆逆时针转动转换组件将电流信号转换为气压信号气路组件实现气压信号放大和自动-手动切换反馈组件平衡电磁力矩,并保证阀门定位器输出与输入的线性关系阀门定位器是按力矩平衡原理工作的5.5.2阀门定位器的作用(1)改善阀的静态特性使其能够准确定位(2)改善阀的动态特性——改变阀原来的一阶滞后特性,减小时间常数,使之成为比例特性。(3)改善阀的流量特性——通过改善反馈凸轮的形状(4)用于分程控制(5)用于阀门的反向动作——可改变阀的气开、气关特性5.6气动薄膜控制阀的选用一般包括:•控制阀结构形式及材质的选择;•控制阀流量特性的选择。•气开、气关的选择;•控制阀口径选择•安装使用5.6.1结构形式及材质的选择依据:工艺条件调节介质特性例如,根据调节介质的特性(如是否有腐蚀性、介质粘度的高低),控制阀前后压差的大小,泄漏量的大小,来选择不同的合适的阀门。表5-2(P96、P97)控制阀选用参考表特殊的情况•闪蒸和空化•磨损•腐蚀•高温•低温•高压降5.6.2流量特性的选择通常是指如何合理选择线性和对数流量特性。选择原则:使整个广义对象具有线性特征。输出输入过程控制阀选择步骤:(1)根据过程特性,选择阀的工作特性;(2)根据配管情况,从所需的工作特性出发,推断理想流量特性。5.6.3控制阀气开、气关的选择原则:安全原则因:供气中断时,应使给水阀全开,使得锅炉不致烧干引起爆炸。蒸汽汽包LTLC给水省煤器锅炉汽包水位控制带控制点的流程图例1:锅炉汽包水位的控制气关阀故:选气关阀。例2:加热炉炉温的控制因:供气中断时,应使燃料阀全关,停止供应燃料油,不致使加热炉温度过高烧坏炉子。TTTC燃料油工艺变量加热炉温度控制带控制点
本文标题:化工自动化及仪表第五章
链接地址:https://www.777doc.com/doc-16197 .html