您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 小学奥数工程问题题型大全含答案
1奥数之工程问题23在日常生活中,做某一件事,制造某种产品,完成某项任务,完成某项工程等等,都要涉及到工作量、工作效率、工作时间这三个量,它们之间的基本数量关系是——工作量=工作效率×时间.在小学数学中,探讨这三个数量之间关系的应用题,我们都叫做“工程问题”。工程问题方法总结:一:基本数量关系:工效×时间=工作总量二:基本特点:设工作总量为“1”,工效=1/时间三:基本方法:4算术方法、整体思想、组合法、比例方法、方程方法、假设法四:基本思想:分做合想、合做分想。五:类型与方法:一:分做合想:1.合想,2.假设法,3.巧抓变化(比例),4.假设法。二:按劳分配思路:每人每天工效→每人工作量→按比例分配三:休息请假:方法:1.分想:划分工作量。2.假设法:假设不休息。3.方程法四:周期工程休息与周期:1.已知条件的顺序:①先工效,再周期,②先周期,再天数。2..天数:①近似天数,②准确天数。3.列表确定工作天数。交替与周期:估算周期,注意顺序!注水与周期:1.顺序,2.池中原来是否有水,3.注满或溢出。五:工效变化。六:比例:1.分比与连比,2.归一思想,3.正反比例的运用,4.假设法思想(周期)。5七:牛吃草问题:1.新生草量,2.原有草量,3.解决问题。一、用“组合法”解工程问题专题简析:在解答工程问题时,如果对题目提供的条件孤立、分散、静止地看,则难以找到明确的解题途径,若用“组合法”把具有相依关系的数学信息进行恰当组合,使之成为一个新的基本单位,便会使隐蔽的数量关系立刻明朗化,从而顺利找到解题途径。例题1。一项工程,甲、乙两队合作15天完成,若甲队做5天,乙队做3天,只能完成工程的730,乙队单独完成全部工程需要几天?【思路导航】此题已知甲、乙两队的工作效率和是115,只要求出甲队货乙队的工作效率,则问题可解,然而这正是本题的难点,用“组合法”将甲队独做5天,乙队独做3天,组合成甲、乙两队合作了3天后,甲队独做2天来考虑,就可以求出甲队2天的工作量730-115×3=130,从而求出甲队的工作效率。所以1÷【115-(730-115×3)÷(5-3)】=20(天)6答:乙队单独完成全部工程需要20天。边讲边练:1、师、徒二人合做一批零件,12天可以完成。师傅先做了3天,因事外出,由徒弟接着做1天,共完成任务的320。如果这批零件由师傅单独做,多少天可以完成?2、某项工程,甲、乙合做1天完成全部工程的524。如果这项工程由甲队独做2天,再由乙队独做3天,能完成全部工程的1324。甲、乙两队单独完成这项工程各需多少天?3、甲、乙两队合做,20天可完成一项工程。先由甲队独做8天,再由乙队独做12天,还剩这项工程的815。甲、乙两队独做各需几天完成?7例题2:一项工程,甲队独做12天可以完成。甲队先做了3天,再由乙队做2天,则能完成这项工程的12。现在甲、乙两队合做若干天后,再由乙队单独做。做完后发现两段所用时间相等。求两段一共用了几天?【思路导航】此题很容易先求乙队的工作效率是:(12-112×3)÷2=18;再由条件“做完后发现两段所用时间相等”的题意,可组合成由两个乙队和一个甲队合做需若干天完成,即可求出相等的时间。(1)乙队每天完成这项工程的(12-112×3)÷2=18(2)两段时间一共是1÷(18×2+112)×2=6(天)答:两段时间一共是6天。边讲边练:81、一项工程,甲队独做15天完成。若甲队先做5天,乙队再做4天能完成这项工程的815。现由甲、乙两队合做若干天后,再由乙队单独做。做完后发现,两段时间相等。这两段时间一共是几天?2、一项工程,甲、乙合做8天完成。如果先让甲独做6天,再由乙独做,完成任务时发现乙比甲多了3天。乙独做这项工程要几天完成?3、某工作,甲单独做要12天,乙单独做要18天,丙单独做要24天。这件工作先由甲做了若干天,再由乙接着做;乙做的天数是甲3倍,再由丙接着做,丙做的天数是乙的2倍。终于完成了这一工作。问总共用了多少天?9例题3:移栽西红柿苗若干棵,如果哥、弟二人合栽8小时完成,先由哥哥栽了3小时后,又由弟弟栽了1小时,还剩总棵数的1116没有栽,已知哥哥每小时比弟弟每小时多栽7棵。共要移栽西红柿苗多少棵?【思路导航】把“哥哥先栽了3小时,弟弟又栽了1小时”组合成“哥、的合栽了1小时后,哥哥又独做了2小时”,就可以求出哥哥每小时栽总数的几分之几。哥哥每小时栽总数的几分之几(1-1116-18×1)÷(3-1)=332一共要移栽的西红柿苗多少棵7÷【332-(18-332)】=112(棵)答:共要移栽西红柿苗112棵。边讲边练:1、加工一批机器零件,师、徒合做12小时可以完成。先由师傅加工8小时,接着再由徒弟加工6小时,共加工了这批零件的35。已知师傅每小时比徒弟多做10个零件。这批零件共有多少个?102、修一条公路,甲、乙两队合做6天可以完成。先由甲队修5天,再由乙队修3天,还剩这条公路的310没有修。已知甲队每天比乙队多修20米。这条公路全长多少米?3、修一段公路,甲队独修要40天,乙队独修要用24天。两队同时从两端开工,结果在距中点750米处相遇。这段公路全长多少米?例题4:一项工作,甲、乙、丙3人合做6小时可以完成。如果甲工作6小时后,乙、丙合做2小时,可以完成这项工作的23;如果甲、乙合做3小时后,丙做6小时,也可以完成这项工作的23。如果由甲、丙合做,需几小时完成?【思路导航】将条件“甲工作6小时后,乙、丙合做2小时,可以完成这项工作的23”组合成“甲工作4小时,甲、乙、11丙合做2小时可以完成这项工作的23”,则求出甲的工作效率。同理,运用“组合法”再求出丙的工作效率。甲每小时完成这项工程的几分之几(23-16×2)÷(6-2)=112丙每小时完成这项工程的几分之几(23-16×3)÷(6-3)=118甲、丙合做需完成的时间为:1÷(112+118)=715(小时)答:甲、丙合做完成需要715小时。边讲边练:1、一项工作,甲、乙、丙三人合做,4小时可以完成。如果甲做4小时后,乙、丙合做2小时,可以完成这项工作的1318;如果甲、乙合做2小时后,丙再做4小时,可以完成这项工作的1118。这项工作如果由甲、丙合做需几小时完成?122、一项工程,甲、乙合做6天可以完成,乙、丙合做10天可以完成。现在先由甲、乙、丙合做3天后,余下的乙再做6天则可以完成。乙独做这项工程要几天就可以完成?3、一项工程,甲、乙两队合做10天完成,乙、丙两队合做8天完成。现在甲、乙、丙三队合做4天后,余下的工程由乙队独做512天完成。乙队单独做这项工程需多少天可以完成?4、一件工作,甲、乙合做4小时完成,乙、丙合做5小时完成。现在由甲、丙合做2小时后,余下的由乙6小时完成。乙独做这件工作需几小时才能完成?13例题5:一条公路,甲队独修24天可以完成,乙队独修30天可以完成。先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成。如果由甲、乙、丙三队同时开工修这条公路,几天可以完成?【思路导航】将条件“先由甲、乙两队合修4天,再由丙队参加一起修7天后全部完成”组合成“甲、乙两队各修(4+7)=11天后,再由丙队单独修了7天才全部完成。”就可以求出丙队的工作效率。丙队每天修这条公路的【1-(124+130)】×(4+7)=140三队合修完成时间为1÷(124+130+140)=10(天)答:10天可以完成。边讲边练:1、一件工作,甲单独做12小时完成。现在甲、乙合做4小时后,乙又用6小时才完成。这件工作始终由甲、乙合做几小时可以完成?142、一条水渠,甲队独挖120天完成,乙队独挖40天完成。现在两队合挖8天,剩下的由丙队加入一起挖,又用12天挖完。这条水渠由丙队单独挖,多少天可以完成?3、一件工作,甲、乙合做6天可以完成,乙、丙合做10天可以完成。如果甲、丙合做3天后,由乙单独做,还要9天才能完成。如果全部工作由3人合做,需几天可以完成?4、一项工程,甲、乙两队合做30天完成,甲队单独做24天后,乙队加入,两队又合做了12天。这时甲队调走,乙队又继续做了15天才完成。甲队独做这项工程需要多少天?15答案:练11、1÷【(320-112)÷(3-1)】=30天2、乙:1÷【(1324-524×2)÷(3-2)】=8天甲:1÷(1324-18)=12天3、乙:1÷【(1-815-120×8)÷(12-8)】=60天甲:1÷(120-160)=30天练21、乙队的工作效率:(815-115×5)÷4=120总共的天数:1÷(115+120×2)×2=12天2、1÷【(1-18×6)÷3】=12天3、甲做的天数:1÷(112+118×3+124×3×2)=2天总共的天数:2+2×3+2×3×2=20天练3161、师傅每小时做这批零件的(35-112×6)÷(8-6)=120这批零件共有10÷【120-(112-120)】=600个2、甲队每天修这条公路的(1-310-16×3)÷(5-3)=110这条公路全长多少米20÷【110-(16-110)】=600米3、甲、乙两队工作效率的比是:140:124=3:5这段公路的全长750÷(12-33+5)=6000米或750×2÷(5-3)×(5+3)=6000米练41、甲队的工作效率(1318-14×2)÷(4-2)=19丙队的工作效率(1118-14×2)÷(4-2)=118甲、丙合做需要的时间1÷(19+118)=6小时2、乙队每天能做全工程的【1-(16×3-110×3)】÷(6-3)=115乙队独做这项工程需要的时间1÷115=15天173.乙队每天能做全工程的【1-(110×4-18×4)】÷(512-4)=115乙队单独做这项工程需要的时间1÷115=15天4、乙队的工作效率【1-(14×2+15×2)】÷(6-2-2)=120乙独做这件工作需要的时间1÷120=20小时练51、乙每小时做这件工程的(1-112×4)÷(6+4)=115甲、乙合做完成需要的时间1÷(112+115)=623小时2、甲、乙两队完成的工作量(1120+140)×(8+2)=23丙队单独挖需要的时间1÷【(1-23)÷12】=36天3.乙的工作效率【1-(16×3+110×3)】÷(9-3-3)=115丙的工作效率110-115=130三人合做需要的时间1÷(16+110)=5天4、甲队的工作效率【1-130×(12+15)】÷(24-15)=19018甲队单独做需要的时间1÷190=90天二、特殊工程问题专题简析:有些工程题中,工作效率、工作时间和工作总量三者之间的数量关系很不明显,这时我们就可以考虑运用一些特殊的思路,如综合转化、整体思考等方法来解题。例1:修一条路,甲队每天修8小时,5天完成;乙队每天修10小时,6天完成。两队合作,每天工作6小时,几天可以完成?把前两个条件综合为“甲队40小时完成”,后两个条件综合为“乙队60小时完成”。则1÷[15×8+110×6]÷6=4(天)或1÷[(15×8+110×6)×6]=4(天)答:4天可以完成。边讲边练:1、修一条路,甲队每天修6小时,4天可以完成;乙队每天修8小时,5天可以完成。现在让甲、乙两队合修,要求2天完成,19每天应修几小时?2、一项工作,甲组3人8天能完成,乙组4人7天也能完成。现在由甲组2人和乙组7人合作,多少天可以完成?3、货场上有一堆沙子,如果用3辆卡车4天可以完成,用4辆马车5天可以运完,用20辆小板车6天可以运完。现在用2辆卡车、3辆马车和7辆小板车共同运两天后,全改用小板车运,必须在两天内运完。问:后两天需要多少辆小板车?例2:有两个同样的仓库A和B,搬运一个仓库里的货物,甲需要10小时,乙需要12小时,丙需要15小时。甲和丙在A仓库,乙在B仓库,同时开始搬运。中途丙转向帮助乙搬运。最后,两个仓库同时搬完,丙帮助甲、乙各多少时间?设搬运一个仓库的货物的工作量为“1”。总整体上看,相当于20三人共同完成工作量“2”①三人同时搬运了2÷(110+112+115)=8(小时)②丙帮甲搬了(
本文标题:小学奥数工程问题题型大全含答案
链接地址:https://www.777doc.com/doc-1656461 .html