您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 最新鲁教版五四制七年级上学期期中考试数学模拟试题及答案解析.docx
鲁教版五四制七年级上学期期中数学试卷(五四学制)一、选择题(共12个小题,每小题3分,共36分)1.下列四幅图案,其中是轴对称图形的个数()A.1个B.2个C.3个D.4个2.下列说法不正确的是()①角平分线上的点到这个角两条边的距离相等②线段的垂直平分线上的点到这条线段的两个端点的距离相等③三角形三条角平分线的交点到这个三角形三个顶点的距离相等.④三角形三条角平分线的交点到这个三角形三边的距离相等.A.1个B.2个C.3个D.4个3.如图,已知AB=AD给出下列条件:(1)CB=CD∠BAC=∠DAC(3)∠BCA=∠DCA(4)∠B=∠D,若再添一个条件后,能使△ABC≌△ADC的共有()A.1个B.2个C.3个D.4个4.下列各组数分别是三角形的三边长,不是直角三角形的一组是()A.4,5,6B.3,4,5C.5,12,13D.6,8,105.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°6.如图中字母A所代表的正方形的面积为()A.4B.8C.16D.647.如图,已知CF垂直平分AB于点E,∠ACD=70°,则∠A的度数是()A.25°B.35°C.40°D.45°8.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cmB.5cmC.6cmD.10cm9.△ABC的三边分别为a、b、c,其对角分别为∠A、∠B、∠C.下列条件不能判定△ABC是直角三角形的是()A.∠B=∠A﹣∠CB.a:b:c=5:12:13C.b2﹣a2=c2D.∠A:∠B:∠C=3:4:510.已知三角形两边长分别为4和9,则此三角形的周长C的取值范围是()A.5<C<13B.4<C<9C.18<C<26D.14<C<2211.已知∠AOB=30°,点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,则△P1OP2是()A.含30°角的直角三角形B.顶角是30°的等腰三角形C.等边三角形D.等腰直角三角形12.将一副三角板(一个等腰直角三角形和一个锐角为60°的直角三角形)如图所示叠放在一起,若DB=20,则阴影部分的面积为()A.50B.100C.150D.200二.填空题(共6小题,每小题3分,共18分.只要求填写最后结果)13.从汽车的后视镜中看见某车车牌的后五位号码是,则该车的后五位号码是.14.如图,在△ABC中,∠B=90°,∠BAC=60°,AB=5,D是BC边延长线上的一点,并且∠D=15°,则CD的长为.15.如图,在△ABC中,BC=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD∥AB,PE∥AC,则△PDE的周长是cm.16.如图,△ABC中,∠C=90°,AB垂直平分线交BC于D.若BC=8,AD=5,则AC等于.17.三角形三边长分别为8,15,17,那么最长边上的高为.18.如图,AD是三角形ABC的对称轴,点E、F是AD上的两点,若BD=2,AD=3,则图中阴影部分的面积是.三.解答题(本大题共7小题,满分66分)19.如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交AC于E,交BC的延长线于F,若∠F=30°,DE=1,求BE的长.20.如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB于点E.(1)求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.21.如图,校园有两条路OA、OB,在交叉路口附近有两块宣传牌C、D,学校准备在这里安装一盏路灯,要求灯柱的位置P离两块宣传牌一样远,并且到两条路的距离也一样远,请你帮助画出灯柱的位置P,简要说明理由.22.在△ABC中,∠ACB=90°,AC=4,BC=3,在△ABD中,BD=12,AD=13,求△ABD的面积.23.如图,把一个直角三角形ACB(∠ACB=90°)绕着顶点B顺时针旋转60°,使得点C旋转到AB边上的一点D,点A旋转到点E的位置.F,G分别是BD,BE上的点,BF=BG,延长CF与DG交于点H.(1)求证:CF=DG;求出∠FHG的度数.24.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.25.如图,在△ABC中,AB=AC,AB的垂直平分线交AB于点N,交BC的延长线于点M,若∠A=40度.(1)求∠NMB的度数;如果将(1)中∠A的度数改为70°,其余条件不变,再求∠NMB的度数;(3)你发现有什么样的规律性,试证明之;(4)若将(1)中的∠A改为钝角,你对这个规律性的认识是否需要加以修改?参考答案与试题解析一、选择题(共12个小题,每小题3分,共36分)1.下列四幅图案,其中是轴对称图形的个数()A.1个B.2个C.3个D.4个【考点】轴对称图形.【分析】根据轴对称图形的概念求解.【解答】解:第一、二、四幅图案是轴对称图形,共3个.故选C.【点评】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.2.下列说法不正确的是()①角平分线上的点到这个角两条边的距离相等②线段的垂直平分线上的点到这条线段的两个端点的距离相等③三角形三条角平分线的交点到这个三角形三个顶点的距离相等.④三角形三条角平分线的交点到这个三角形三边的距离相等.A.1个B.2个C.3个D.4个【考点】角平分线的性质;线段垂直平分线的性质.【分析】根据角平分线的性质判断①③④;根据线段垂直平分线的性质判断②.【解答】解:①角平分线上的点到这个角两条边的距离相等,说法正确;②线段的垂直平分线上的点到这条线段的两个端点的距离相等,说法正确;③三角形三条角平分线的交点到这个三角形三个顶点的距离相等,说法错误;④三角形三条角平分线的交点到这个三角形三边的距离相等,说法正确.其中正确的结论有①②④.故选C.【点评】本题考查了角平分线的性质,线段垂直平分线的性质,用到的知识点:角的平分线上的点到角的两边的距离相等;线段垂直平分线上任意一点,到线段两端点的距离相等.3.如图,已知AB=AD给出下列条件:(1)CB=CD∠BAC=∠DAC(3)∠BCA=∠DCA(4)∠B=∠D,若再添一个条件后,能使△ABC≌△ADC的共有()A.1个B.2个C.3个D.4个【考点】全等三角形的判定.【分析】由图形△ABC和△ADC有公共边,结合条件AB=AD,故可再加一组边,和公共边与已知一组边的夹角相等可得全等.【解答】解:由图形△ABC和△ADC有公共边,结合条件AB=AD,故可再加一组边,和公共边与已知一组边的夹角相等,即当CB=CD或∠BAC=∠DAC时△ABC≌△ADC,所以能使△ABC≌△ADC的条件有两个,故选B.【点评】本题主要考查全等三角形的判定,掌握全等三角形的判定方法是解题的关键.4.下列各组数分别是三角形的三边长,不是直角三角形的一组是()A.4,5,6B.3,4,5C.5,12,13D.6,8,10【考点】勾股定理的逆定理.【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个是直角三角形判定则可.如果有这种关系,就是直角三角形,没有这种关系,就不是直角三角形.【解答】解:A、42+52≠62,不符合勾股定理的逆定理,不是直角三角形;B、32+42=25=52,符合勾股定理的逆定理,是直角三角形;C、52+122=169=132,符合勾股定理的逆定理,是直角三角形;D、62+82=100=102,符合勾股定理的逆定理,是直角三角形.故选A.【点评】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.等腰三角形的一个角是80°,则它顶角的度数是()A.80°B.80°或20°C.80°或50°D.20°【考点】等腰三角形的性质.【专题】分类讨论.【分析】分80°角是顶角与底角两种情况讨论求解.【解答】解:①80°角是顶角时,三角形的顶角为80°,②80°角是底角时,顶角为180°﹣80°×2=20°,综上所述,该等腰三角形顶角的度数为80°或20°.故选:B.【点评】本题考查了等腰三角形两底角相等的性质,难点在于要分情况讨论求解.6.如图中字母A所代表的正方形的面积为()A.4B.8C.16D.64【考点】勾股定理.【分析】根据勾股定理的几何意义解答.【解答】解:根据勾股定理以及正方形的面积公式知:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积,所以A=289﹣225=64.故选D.【点评】能够运用勾股定理发现并证明结论:以直角三角形的两条直角边为边长的正方形的面积和等于以斜边为边长的正方形的面积.运用结论可以迅速解题,节省时间.7.如图,已知CF垂直平分AB于点E,∠ACD=70°,则∠A的度数是()A.25°B.35°C.40°D.45°【考点】线段垂直平分线的性质.【分析】根据线段垂直平分线的性质得到CA=CB,则有∠B=∠A,再根据三角形外角的性质得到∠ACD=∠A+∠B=70°,由此求出∠A的度数.【解答】解:∵CF垂直平分AB,∴CA=CB,∴∠B=∠A.∵∠ACD=∠A+∠B=70°,∴∠A=∠B=35°.故选B.【点评】本题主要考查了线段垂直平分线的性质:线段垂直平分线上的点到线段两端点的距离相等.8.如图是一张直角三角形的纸片,两直角边AC=6cm、BC=8cm,现将△ABC折叠,使点B与点A重合,折痕为DE,则BE的长为()A.4cmB.5cmC.6cmD.10cm【考点】翻折变换(折叠问题).【分析】先根据勾股定理求出AB的长,再由图形折叠的性质可知,AE=BE,故可得出结论.【解答】解:∵△ABC是直角三角形,两直角边AC=6cm、BC=8cm,∴AB===10cm,∵△ADE由△BDE折叠而成,∴AE=BE=AB=×10=5cm.故选:B.【点评】本题考查的是翻折变换,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.9.△ABC的三边分别为a、b、c,其对角分别为∠A、∠B、∠C.下列条件不能判定△ABC是直角三角形的是()A.∠B=∠A﹣∠CB.a:b:c=5:12:13C.b2﹣a2=c2D.∠A:∠B:∠C=3:4:5【考点】勾股定理的逆定理;三角形内角和定理.【专题】计算题.【分析】根据三角形内角和定理判断A、D即可;根据勾股定理的逆定理判断B、C即可.【解答】解:A、∵∠B=∠A﹣∠C,∴∠B+∠C=∠A,∵∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,即△ABC是直角三角形,故本选项错误;B、∵52+122=132,∴△ABC是直角三角形,故本选项错误;C、∵b2﹣a2=c2,∴b2=a2+c2,∴△ABC是直角三角形,故本选项错误;D、∵∠A:∠B:∠C=3:4:5,∠A+∠B+∠C=180°,∴∠A=45°,∠B=60°,∠C=75°,∴△ABC不是直角三角形,故本选项正确;故选D.【点评】本题考查了三角形内角和定理,勾股定理的逆定理的应用,主要考查学生的计算能力和辨析能力.10.已知三角形两边长分别为4和9,则此三角形的周长C的取值范围是()A.5<C<13B.4<C<9C.18<C<26D.14<C<22【考点】三角形三边关系.【分析】根据三角形的任意两边之和大于第三边,任意两边之差小于第三边求出第三边的范围,然后根据三角形的周长公式求解即可.【解答】解:∵4+9=13,9﹣4=5,∴5<第三边<13,∴4+5+9<C<13+4+9即18<C<26.故选:C.【点评】此题主要考查了三角形的三边关系,熟记关系求出第三边的取值范围是解题的关键.11.已知∠AOB=30°,点P在∠AOB内部,点P1与点P
本文标题:最新鲁教版五四制七年级上学期期中考试数学模拟试题及答案解析.docx
链接地址:https://www.777doc.com/doc-1656850 .html