您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 《任意角的三角函数》教学设计
1《任意角的三角函数》教学设计高一级王拴礼一、学情分析在初中学生学习过锐角三角函数。因此本课的内容对于学生来说,有比较厚实的基础,新课的引入会比较容易和顺畅。学生要面对的新的学习问题是,角的概念推广了,原先学生所熟悉的锐角三角函数的定义是否也可以推广到任意角呢?通过这个问题,让学生体会到新知识的发生是可能的,自然的。二、教学目标分析(一)知识与技能1.掌握任意角的正弦、余弦、正切的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域、值域以及象限符号。(二)过程与方法锐角三角函数就是以锐角为自变量,以比值为函数值的函数.引导学生把这个定义推广到任意角,通过单位圆和角的终边,探讨任意角的三角函数值的求法,最终得到任意角三角函数的定义.根据角终边所在位置不同,分别探讨各三角函数的定义域、象限符号。(三)情感、态度与价值观1.使学生认识到事物之间是有联系的,三角函数就是角度(自变量)与比值(函数值)的一种联系方式;2.通过共同探究,发现新知的过程,培养学生团结协作的意识以及大胆猜想、勇于探索的科学精神.三、教学重点、难点分析(一)教学重点三角函数是函数的一个特例,与指数函数、对数函数具有相同的地位,但是在具体的定义方式上又有所不同,应该按照概念的体系将之纳入到原有的认知结构中,揭示彼此之间的关系,认识新概念的本质属性。因此本课时的教学重点是:通过概念的同化与精致过程,帮助学生理解任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号),并在这个过程中突出单位圆的作用。(二)教学难点本课时研究的是任意角的三角函数,学生在初中阶段研究过锐角三角函数,研究范围是锐角;研究方法是几何的,没有坐标系的参与;研究目的是为解直角三角形服务。以上三点都是与本课时不同的,因此在教学过程中要发展学生的已有认知经验,发挥其学生的主体作用。具体而言要做到:明确研究范围的变化,开阔学生的视野,并揭示由此带来的新问题,激发学生的学习兴趣;借助单位圆在坐标系中进行研究,要先将锐角的三角函数问题置于坐标系中,帮助学生利用坐标系借助单位圆重新认识锐角三角函数,这样做激活了学生的已有知识经验,并且用新的视角认识已有知识经验,复习了旧知识,同时为新的研究内容做好铺垫。2认识一个函数,关键是认识函数的三要素。在任意角的三角函数学习过程中也可能在自变量和对应法则上出现问题,应该注意明确任意角的三角函数的三要素,比如正弦函数y=sinα中自变量是角,并且∈R,对应法则是一个角与其正弦值对应,至于这个值怎么计算,在此处是规定为角终边与单位圆交点的纵坐标,通过例2可以看出,也可以利用比值定义。对于一次函数、二次函数也需要将自变量的值进行计算得到函数值,这一点本质上是统一的,要引导学生类比理解。综合上述分析,本课时的教学难点是:用角的终边上的点的坐标来刻画三角函数;三角函数符号.四、学法与教学用具分析利用“班班通”的几何画板改变角的位置,认识角的终边位于不同象限时如何定义角的三角函数值,充实学生的直观感知材料,帮助学生形成比较全面的认知。五、教学过程设计(一)创设情境,导入新课1、复习引入(情景1)我们在初中通过锐角三角形的边角关系,学习了锐角的正弦、余弦、正切等三个三角函数.请回想:这三个三角函数分别是怎样规定的?(设计意图:温故而知新。要让学生体会知识的产生、发展过程,就要从源头上开始,从学生现有认知状况开始。)学生口述后再投影展示,教师再根据投影进行强调:2.引伸铺垫、创设情景(情景2)我们已经把锐角推广到了任意角,锐角的三角函数概念也能推广到任意角吗?试试看,可以独立思考和探索,也可以互相讨论!(设计意图:现有认知水平和认知能力出发,创设问题情景,让学生产生知识冲突,进行必要启发,将学生思维引上自主探索、合作交流的再创造征途。)留时间让学生独立思考或自由讨论,教师参与讨论或巡回对学困生作启发引导.能推广吗?怎样推广?针对刚才的问题点名让学生回答.用角的对边、邻边、斜边比值的说法显然是受到阻碍了,由于1.1节已经以直角坐标系为工具来研究任意角了,学生一般会想到(否则教师进行提示)继续用直角坐标系来研究任意角的三角函数.(二)主题探究,合作交流问题1本章研究的问题是三角函数,函数的研究离不开平面直角坐标系。现在请你结合初中时我们学习的锐角三角函数的定义,你能用直角坐标系中角的终边上的点的坐标来表示锐角三角函数吗?(设计意图:将已有知识坐标化,分化难点。用新的观点再认识学生的已有知识经验,对边邻边αsinα=斜边对边,conα=斜边邻边,tanα=邻边对边(图1)3发挥学生的主体作用,同时使本课时的学习与学生的已有知识经验紧密联系起来。)预计的回答:学生可以回忆出初中学过的锐角三角函数的定义,但是在用坐标语言表述时可能会出现困难——即使将角置于坐标系中但是仍然习惯用三角形边的比值表示锐角三角函数,需要教师引导学生将之转换为用终边上的点的坐标表示锐角三角函数。解答过程:(1)再现锐角三角函数的定义:如图,在直角△POM中,∠M是直角,于是。(2)坐标化:如图,建立平面直角坐标系,设锐角的顶点与原点O重合,始边与x轴的正半轴重合,那么它的终边在第一象限.在的终边上任取一点P,设点P的坐标为(x,y),它与原点的距离.过P作x轴的垂线,垂足为M,则线段OM的长度为X,线段MP的长度为y.则:;问题2对于确定的角,这三个比值是否会随点P在的终边上的位置的改变而改变呢?为什么?(设计意图:引入单位圆。深化对单位圆作用的认识,用数学的简洁美引导学生进行研究,为定义的拓展奠定基础。该问题与问题1结合,分步推进,降低难度,基本尊重教材的处理方式。)预计的困难:由于学生第一次接触单位圆,对它所能起的作用不了解,所以需要教师的引导。也可以引导学生从形式上对上述定义化简,使得分母为1,之后通过分母的几何意义将之与单位圆结合起来。根据相似三角形的知识,对于确定的角,三个比值不以点P在的终边上的位置的改变而改变大小.我们可以将点P取在使线段OP的长1r的特殊位置上,这样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:MOyαP(x,y)x4单位圆:在直角坐标系中,我们称以原点O为圆心,以单位长度为半径的圆称为单位圆.上述P点就是的终边与单位圆的交点,锐角的三角函数可以用单位圆上点的坐标表示.问题3:上述定义是借助于单位圆,利用角的终边与单位圆的交点的坐标给出的,它可以推广到任意角的三角函数,结合上述锐角的三角函数值的求法,请你写出任意角的三角函数的定义。分小组分别写出角的终边位于第二、三、四象限和x轴、y轴上时的三角函数。(设计意图:具体认识任意角的三角函数,突现本课时的研究重点。如果问题太一般化,如设计为:上述定义可以推广到任意角的三角函数,请写出任意角的三角函数的定义。那么学生不知道“上述定义”是指哪个,而且不明白任意角该如何取。所以在问题设计中再次强调要借助于单位圆,利用坐标,限定学生的思维,以免太发散。再者在一般要求“写出任意角的三角函数”之后,又提出具体的活动方式:分小组针对不同位置的角分别写出其三角函数。这样将问题具体化,学生容易着手解决。写出定义的过程也是巩固推广的过程,而且这样做尽可能避免出现学生用计算器算cosπ的现象。)活动形式:由学生分组独立完成之后再展示交流,形成具体而全面的认识。学生可能会在写出任意角的三角函数的定义时出现困难,教师的帮助不要具体,而是在思维上引导——用坐标表示,并引导学生正确认识三角函数的定义域。结论:如图,设是一个任意角,它的终边与单位圆交于点(,)Pxy,那么:(1)y叫做的正弦(sine),记做sin,即siny;(2)x叫做的余弦(cosine),记做cos,即cosx;(3)yx叫做的正切(tangent),记做tan,即tan(0)yxx.问题4:在上述三角函数定义中,自变量是什么?对应关系有什么特点,函数值是什么?(设计意图:通过这样的活动强化学生对任意角三角函数定义的理解,达到对概念的初步精致。)预计的困难:学生对三角函数的自变量认识可能会存在问题。教师的引导:引导学生利用单位圆的几何意义解释正弦、余弦的值域。预计的答案:设是一个任意角,它的终边与单位圆交于点P(x,y)。A(1,0)_OP(x,y)yx5说明:(1)当ππ()2kkZ时,的终边在y轴上,终边上任意一点的横坐标x都等于0,所以tanyx无意义,除此情况外,对于确定的值,上述三个值都是唯一确定的实数.(2)当是锐角时,此定义与初中定义相同;当不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点()Pxy,,从而就必然能够最终算出三角函数值.(3)正弦、余弦、正切都是以角为自变量,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将这种函数统称为三角函数.(三)例题讲解例1求的正弦、余弦和正切值。(设计意图:巩固对定义的理解。)分析:根据定义求解,先利用锐角三角函数知识求出点P的坐标,再根据定义求解。解:如图5,可知在RTΔOPC中,∠OPC=30o,所以OC=,CP=,所以点P的坐标是。根据定义可得:例2已知角α的终边经过点P0(-3,-4),求角α的正弦、余弦和正切值。(设计意图:通过问题的转化,进一步加深对定义的理解。)分析:如右图,由△OMP∽△OM0P0,可求出相应的三角函数值.6解:由已知,可得|OP0|=22)4()3(=5.如图,设角α的终边与单位圆交于点P(x,y).分别过点P、P0作x轴的垂线MP、M0P0,则|M0P0|=4,|MP|=-y,|OM0|=3,|OM|=-x,△OMP∽△OM0P0,于是sinα=y=1y=|OP||MP|=||||000OPPM=54;cosα=x=1x=|OP||OM|=||||00OPOM=53;tanα=xy=sincosa=34.(点评:本例是已知角α终边上一点的坐标,求角α的三角函数值问题.可以先根据三角形相似将这一问题化归到单位圆上,再由定义得解.)探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:三角函数定义域第一象限第二象限第三象限第四象限角度制弧度制sincostan三角函数的定义告诉我们,各三角函数在各象限内的符号,取决于x,y的符号,当点P在第一、二象限时,纵坐标y0,点P在第三、四象限时,纵坐标y0,所以正弦函数值对于第一、二象限角是正的,对于第三、四象限角是负的(可制作课件展示);同样地,余弦函数在第一、四象限是正的,在第二、三象限是负的;正切函数在第一、三象限是正的,在第二、四象限是负的.从而完成上面探究问题.即“一全正,二正弦,三正切,四余弦”.六、课堂小结1.本章的三角函数定义与初中时的定义有何异同?2.你能准确判断三角函数值在各象限内的符号吗?3.请写出各三角函数的定义域;(设计意图:引导学生小结,并进一步思考。通过质疑引导学生全面认识三角函数,培养思维的严谨性。通过三角函数定义的一般化,引导学生用辩证的观点认识事物,理解三角函数。)七、评价设计1.P15练习1,2,3;(设计意图:培养学生类比、对比解决问题能力。)2.作业:教材20页习题1.2A组第1、2题.(设计意图:将作业作为课堂教学的延伸,培养学生自主学习的能力和习惯。)
本文标题:《任意角的三角函数》教学设计
链接地址:https://www.777doc.com/doc-1679090 .html