您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 相似三角形判定练习题
成功源于努力!相似三角形的判定(提高)一、选择题1.已知△A1B1C1与△A2B2C2的相似比为4:3,△A2B2C2与△A3B3C3的相似比为4:5,则△A1B1C1与△A3B3C3的相似比为()A.16:15B.15:16C.3:5D.16:15或15:162.如图,P是RtΔABC的斜边BC上异于B、C的一点,过点P做直线截ΔABC,使截得的三角形与ΔABC相似,满足这样条件的直线共有().A.1条B.2条C.3条D.4条3.如图,在△ABC中,M是AC边中点,E是AB上一点,且AE=AB,连结EM并延长,交BC的延长线于D,此时BC:CD为()A.2:1B.3:2C.3:1D.5:24.如图,在平行四边形ABCD中,E是AD上的一点,连接CE并延长交BA的延长线于点F,则下列结论中错误的是().A.∠AEF=∠DECB.FA∶CD=AE∶BCC.FA∶AB=FE∶ECD.AB=DC5.如图,在Rt△ABC中,∠C=90°,CD⊥AB,垂足为D,则图中相似三角形有().A.4对B.3对C.2对D.1对6.如图,ABCD是正方形,E是CD的中点,P是BC边上的一点,下列条件中,不能推出△ABP与△ECP相似的是()A.∠APB=∠EPCB.∠APE=90°C.P是BC的中点D.BP:BC=2:3二、填空题7.如图,∠1=∠2=∠3,则图中与△CDE相似三角形是________和________8.如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC于G,则图中相似三角形有_________对.9.如图,是正方形ABCD的外接圆,点F是AB的中点,CF的延长线交于点E,则CF:EF的值是________.10.如图,点M在BC上,点N在AM上,CM=CN,,则①△ABM∽△ACB,②△ANC∽△AMB,③△ANC∽△ACM,④△CMN∽△BCA中正确的有___________.11.如图,在平行四边形ABCD中,M,N为AB的三等分点,DM,DN分别交AC于P,Q两点,则AP:PQ:QC=_________.12.如图,正方形ABCD的边长为2,AE=EB,MN=1.线段MN的两端在CB,CD边上滑动,当CM=______时,△AED与以M、N、C为顶点的三角形相似.三、解答题13.如图,和都是等边三角形,且B、C、D共线,BE分别和AC、AD相交于点M、G,CE和AD相交于点N.求证:(1)CG平分.(2)∽.14.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且BD=CE,AD与BE相交于点F.(1)试说明△ABD≌△BCE;(2)△EAF与△EBA相似吗?说说你的理由.15.已知点P在线段AB上,点O在线段AB的延长线上.以点O为圆心,OP为半径作圆,点C是圆O上的一点.(1)如图,如果AP=2PB,PB=BO.求证:△CAO∽△BCO;(2)如果AP=m(m是常数,且),BP=1,OP是OA、OB的比例中项.当点C在圆O上运动时,求的值(结果用含m的式子表示);(3)在(2)的条件下,讨论以BC为半径的圆B和以CA为半径的圆C的位置关系,并写出相应m的取值范围.【答案与解析】一.选择题1.【答案】A.2.【答案】C.【解析】分别是过点P做AB,AC,BC的垂线.3.【答案】A.【解析】如图,做CN∥AB,交ED于点N,∵M是AC边中点,△AEM≌△CNM,即CN=AE,∵AE=AB,∴AE:BE=1:3,即CN:BE=1:3.∵CN∥AB,∴△DCN∽△DBE,即CD:BD=CN:BE=1:3,∴CD:BC=1:2.4.【答案】B5.【答案】B【解析】△ABC∽△ACD;△ABC∽△CBD;△CBD∽△ACD.6.【答案】C.【解析】当P是BC的中点时,△EPC为等腰直角三角形.二.填空题7.【答案】△CEA、△CAB.8.【答案】3对.【解析】由∠CPD=∠A=∠B,得△CPF∽△CBP,△DPG∽△DAP,得∠CPB=∠CFP,则∠APG=∠BFP,得△APG∽△BFP,有3对.9.【答案】5:1.【解析】如图,连接AE,则△AEF∽△CBF,∵点F是AB的中点,正方形ABCD,∴EF:AE=BF:BC=1:2.设EF=K,则AE=2K,AF=K,即BF=K,BC=2K,CF=5K.∴CF:EF=5:1.10.【答案】②.11.【答案】5:3:12【解析】略12.【答案】.三综合题13.【解析】(1)证明:如图,作CP⊥AD于P,CQ⊥BE于Q,∵和都是等边三角形,∴AC=BC,CD=CE,∠ACB=∠DCE=60°,∴∠ACB+∠ACE=∠DCE+∠ACE即∠BCE=∠ACD,∴△BCE≌△ACD,∴∠BEC=∠ADC,∵CP⊥AD,CQ⊥BE∴∠CQE=∠CPD=90°在△CQE和△CPD中:∴△CQE≌△CPD,∴CQ=CP,∴CG平分(到角的两边距离相等的点在这个角的角平分线上。)(2)∵△BCE≌△ACD,∴∠CBE=∠CAD,又∵∠CMB=∠AMG,∴∠BCM=∠AGM=60°,又∵CG平分,∴∠CGB=∠CGD=60°=∠EGP,∴∠AGC=120°=∠CGE,∠GCE=∠60°−∠BEC∵∠EBC=60°-∠BEC,∴∠GCE=∠EBC=∠CAD,∴△ACG∽△CEG.14.【解析】(1)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE=∠BAC,又∵BD=CE,∴△ABD≌△BCE;(2)相似;∵△ABD≌△BCE,∴∠BAD=∠CBE,∴∠BAC-∠BAD=∠CBA-∠CBE,∴∠EAF=∠EBA,又∵∠AEF=∠BEA,∴△EAF∽△EBA.15.【解析】(1)利用两边的比相等,夹角相等证相似.由已知AP=2PB,PB=BO可推出,∴△CAO∽△BCO(2)设∵是的比例中项,∴是的比例中项即∴解得又∵(3)∵,,即当时,两圆内切;当时,两圆内含;当时,两圆相交.
本文标题:相似三角形判定练习题
链接地址:https://www.777doc.com/doc-1723237 .html