您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 浙教版初中数学九年级上知识点期末复习(十七)
1浙教版初中数学九年级上知识点期末复习第一章:反比例函数1、反比例函数的概念一般地,形如y=kx(k为常数,k≠0)的函数称为反比例函数,其中x是自变量,y是x的函数,k是比例系数.注意:(1)常数k称为比例系数,k是非零常数;(2)解析式有三种常见的表达形式:(A)y=xk(k≠0)(B)xy=k(k≠0)(C)y=kx-1(k≠0)2、反比例函数的图像和性质反比例函数xky(k≠0)的图象是由两个分支组成的曲线。当0k时,图象在一、三象限:当0k时,图象在二、四象限。反比例函数xky(k≠0)的图象关于直角坐标系的原点成中心对称。3、反比例函数解析式的确定确定及诶是的方法仍是待定系数法。由于在反比例函数xky中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k的值,从而确定其解析式。4、反比例函数中反比例系数的几何意义过反比例函数)0(kxky图像上任一点P作x轴、y轴的垂线PM,PN,则所得的矩形PMON的面积S=PMPN=xyxy。kSkxyxky,,。5、比较正比例函数和反比例函数的性质正比例函数反比例函数解析式图像直线双曲线位置k>0,一、三象限;k<0,二、四象限k>0,一、三象限k<0,二、四象限增减性k>0,y随x的增大而增大k<0,y随x的增大而减小k>0,在每个象限y随x的增大而减小k<0,在每个象限y随x的增大而增大第二章:二次函数1、二次函数定义:一般地,如果cbacbxaxy,,(2是常数,)0a,那么y叫做x的二次函数.(0)ykxk(0)kykx22、二次函数的解析式有三种形式:(1)一般式:)0,,(2acbacbxaxy是常数,(2)顶点式:)0,,()(2akhakhxay是常数,(3)当抛物线cbxaxy2与x轴有交点时,即对应二次好方程02cbxax有实根1x和2x存在时,根据二次三项式的分解因式))((212xxxxacbxax,二次函数cbxaxy2可转化为两根式))((21xxxxay。如果没有交点,则不能这样表示。3、二次函数cbxaxy2的图像是对称轴平行于(包括重合)y轴的抛物线.4、二次函数cbxaxy2用配方法可化成:khxay2的形式,其中abackabh4422,.5、二次函数由特殊到一般,可分为以下几种形式:①2axy;②kaxy2;③2hxay;④khxay2;⑤cbxaxy2.6、抛物线的三要素:开口方向、对称轴、顶点.①a的符号决定抛物线的开口方向:当0a时,开口向上;当0a时,开口向下;a相等,抛物线的开口大小、形状相同.②平行于y轴(或重合)的直线记作hx.特别地,y轴记作直线0x.7、顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.8、求抛物线的顶点、对称轴的方法(1)公式法:abacabxacbxaxy442222,∴顶点是),(abacab4422,对称轴是直线abx2.(2)配方法:运用配方的方法,将抛物线的解析式化为khxay2的形式,得到顶点为(h,k),对称轴是直线hx.(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.3用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.9、抛物线cbxaxy2中,cba,,的作用(1)a决定开口方向及开口大小,这与2axy中的a完全一样.(2)b和a共同决定抛物线对称轴的位置.由于抛物线cbxaxy2的对称轴是直线abx2,故:①0b时,对称轴为y轴;②0ab(即a、b同号)时,对称轴在y轴左侧;③0ab(即a、b异号)时,对称轴在y轴右侧.(3)c的大小决定抛物线cbxaxy2与y轴交点的位置.当0x时,cy,∴抛物线cbxaxy2与y轴有且只有一个交点(0,c):①0c,抛物线经过原点;②0c,与y轴交于正半轴;③0c,与y轴交于负半轴.以上三点中,当结论和条件互换时,仍成立.如抛物线的对称轴在y轴右侧,则0ab.10、几种特殊的二次函数的图像特征如下:函数解析式开口方向对称轴顶点坐标2axy当0a时开口向上当0a时开口向下0x(y轴)(0,0)kaxy20x(y轴)(0,k)2hxayhx(h,0)khxay2hx(h,k)cbxaxy2abx2(abacab4422,)11、用待定系数法求二次函数的解析式(1)一般式:cbxaxy2.已知图像上三点或三对x、y的值,通常选择一般式.(2)顶点式:khxay2.已知图像的顶点或对称轴,通常选择顶点式.4(3)交点式:已知图像与x轴的交点坐标1x、2x,通常选用交点式:21xxxxay.12.、直线与抛物线的交点(1)y轴与抛物线cbxaxy2得交点为(0,c).(2)与y轴平行的直线hx与抛物线cbxaxy2有且只有一个交点(h,cbhah2).(3)抛物线与x轴的交点二次函数cbxaxy2的图像与x轴的两个交点的横坐标1x、2x,是对应一元二次方程02cbxax的两个实数根.抛物线与x轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点0抛物线与x轴相交;②有一个交点(顶点在x轴上)0抛物线与x轴相切;③没有交点0抛物线与x轴相离.(4)平行于x轴的直线与抛物线的交点同(3)一样可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k,则横坐标是kcbxax2的两个实数根.(5)一次函数0knkxy的图像l与二次函数02acbxaxy的图像G的交点,由方程组cbxaxynkxy2的解的数目来确定:①方程组有两组不同的解时l与G有两个交点;②方程组只有一组解时l与G只有一个交点;③方程组无解时l与G没有交点.(6)抛物线与x轴两交点之间的距离:若抛物线cbxaxy2与x轴两交点为0021,,,xBxA,由于1x、2x是方程02cbxax的两个根,故acxxabxx2121,aaacbacabxxxxxxxxAB4442221221221215BEDAFCO第三章:圆的基本性质(一)圆的定义在同一平面内,一条线段OP绕它固定的一个端点O旋转一周,另一个端点P所经过的封闭曲线叫做圆.定点O就是圆心,线段OP就是圆的半径.以点O为圆心的圆,记作“⊙O”,读作“圆O”.(二)圆的有关概念弦直径圆弧半圆劣弧优弧等圆同心圆(1)连结圆上任意两点的线段叫做弦,如图BC.经过圆心的弦是直径,图中的AB。直径等于半径的2倍.(2)圆上任意两点间的部分叫做圆弧,简称弧.弧用符号“⌒”表示.小于半圆的弧叫做劣弧,如图中以B、C为端点的劣弧记做“”;大于半圆的弧叫做优弧,优弧要用三个字母表示.(3)半径相等的两个圆能够完全重合,我们把半径相等的两个圆叫做等圆.例如,图中的⊙O1和⊙O2是等圆.圆心相同,半径不相等的圆叫做同心圆。(三)三点确定一个圆结论:不在同一直线上的三个点确定一个圆(四)平面上点与圆的位置关系一般地,如果P是圆所在平面内的一点,d表示P到圆心的距离,r表示圆的半径,那么有:drP在圆内d=rP在圆上drP在圆外.(五)圆的有关概念定义:经过三角形各个顶点的圆叫做三角形的外接圆,外接圆的圆心叫做三角形的外心,这个三角形叫做圆的内接三角形.(六)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧.推论1(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦并且平分弦所对的另一条弧.(七)、圆心角定理1、顶点在圆心的角,叫圆心角2、圆的旋转不变性:圆绕圆心旋转任意角α,都能够与原来的圆重合。3、圆心到弦的距离,叫弦心距2、圆心角定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。3、圆心角定理的推论逆命题1:在同圆或等圆中,相等的弧所对的圆心角相等,所对的弦相等,所对的弦的弦心距相等。逆命题2:在同圆或等圆中,相等的弦所对的圆心角相等,所对的弧相等,弦的弦心距相等。逆命题3:在同圆或等圆中,相等的弦心距对应弦相等,弦所对的圆心角相等,所对的弧相等。一般地,圆有下面的性质在同圆或等圆中,如果两个圆心角、两条弧、两条弦、两个弦心距中有一组量相等,那么它们所对应的其余的各组量都相等。6(八)、圆周角定理1、圆周角定义:顶点在圆上,并且两边都和圆相交的角叫圆周角.特征:①角的顶点在圆上.②角的两边都与圆相交.2、圆心角与所对的弧的关系3、圆周角与所对的弧的关系4、同弧所对的圆心角与圆周角的关系2、圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半.推论1:圆周角的度数等于它所对弧的度数的一半。推论2:半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径。说明圆的内接四边形的对角互补(九)弧长及扇形的面积弧长的计算公式L=180Rn.扇形面积公式:2nr1==lr3602S(十)圆锥的侧面积和全面积圆锥侧面积:=rlS圆锥全面积:2=rl+rS侧面展开图的圆心角:r=360l第四章:相似三角形1.比例线段的有关概念:1.如果两个数的比值与另两个数的比值相等,那么这四个数成比例。2、a、b、c、d成比例,可表示成a:b=c:d或ab=cd,其中b、c叫做内项,a、d叫做外项。3.基本性质:ab=cd=ad=bc(a、b、c、d都不为零)重要方法:1.判断四个数a、b、c、d是否成比例,方法1:计算a:b和c:d的值是否相等;方法2:计算ad和bc的值是否相等,(利用ad=bc推出ab=cd)2.“ac=bd=ab=cd”的比例式之间的变换是抓住实质ad=bc。3.记住一些常用的结论:ab=cd=a+bb=c+dd,ab=a+cb+d。4.两条线段的长度的比叫做两条线段的比。75.四条线段a、b、c、d中,如果a与b的比等于c与d的比,即ab=cd,那么这四条线段a、b、c、d叫做成比例线段,简称比例线段。6.黄金分割:把线段AB分成两条线段AC和BC,使AC2=AB•BC,叫做把线段AB黄金分割,C叫做线段AB的黄金分割点。2.相似三角形的判定:①两角对应相等,两个三角形相似②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。3.相似三角形的性质①相似三角形的对应角相等②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比⑤相似三角形面积的比等于相似比的平方5、相似多边形1、对应角相等,对应边成比例的两个多边形叫做相似多边形.相似多边形对应边的比叫做相似比..2、相似多边形的周长的比等于相似比,面积比等于相似比的平方.8五.锐角三角函数一.知识框架二.知识概念1.Rt△ABC中(1)∠A的对边与斜边的比值是∠A的正弦,记作sinA=∠A的对边斜边(2)∠A的邻边与斜边的比值是∠A的余弦,记作cosA=∠A的邻边斜边(3)∠A的对边与邻边的比值是∠A的正切,记作tanA=∠A的对边∠A的邻边(4)∠
本文标题:浙教版初中数学九年级上知识点期末复习(十七)
链接地址:https://www.777doc.com/doc-1723711 .html