您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 高三数学一轮复习AB组教案15《同角三角函数的基本关系》
▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓第六章三角恒等变形第一节同角三角函数的基本关系A组1.已知sinα=55,sin(α-β)=-1010,α、β均为锐角,则β等于________.解析:∵α、β均为锐角,∴-π2α-βπ2,∴cos(α-β)=1-sin2(α-β)=31010.∵sinα=55,∴cosα=1-(55)2=255.∴sinβ=sin[α-(α-β)]=sinαcos(α-β)-cosαsin(α-β)=22.∵0βπ2,∴β=π4.答案:π42.已知0απ2βπ,cosα=35,sin(α+β)=-35,则cosβ的值为________.解析:∵0απ2,π2βπ,∴π2α+β32π.∴sinα=45,cos(α+β)=-45,∴cosβ=cos[(α+β)-α]=cos(α+β)cosα+sin(α+β)sinα=(-45)×35+(-35)×45=-2425.答案:-24253.如果tanα、tanβ是方程x2-3x-3=0的两根,则sin(α+β)cos(α-β)=________解析:tanα+tanβ=3,tanαtanβ=-3,则sin(α+β)cos(α-β)=sinαcosβ+cosαsinβcosαcosβ+sinαsinβ=tanα+tanβ1+tanαtanβ=31-3=-32.答案:-324.(2008年高考山东卷改编)已知cos(α-π6)+sinα=453,则sin(α+7π6)的值是___.解析:由已知得32cosα+12sinα+sinα=453,即12cosα+32sinα=45,得sin(α+π6)=45,sin(α+76π)=-sin(α+π6)=-45.答案:-455.(原创题)定义运算ab=a2-ab-b2,则sinπ12π12=________.解析:sinπ12π12=sin2π12-sinπ12cosπ12-cos2π12=-(cos2π12-sin2π12)-12×2sinπ12cosπ12=-cosπ6-12sinπ6=-1+234.答案:-1+2346.已知α∈(π2,π),且sinα2+cosα2=62.(1)求cosα的值;(2)若sin(α-β)=-35,β∈(π2,π),求cosβ的值.解:(1)因为sinα2+cosα2=62,两边同时平方得sinα=12.又π2απ.所以cosα=-32.(2)因为π2απ,π2βπ,所以-π-β-π2,故-π2α-βπ2▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓又sin(α-β)=-35,得cos(α-β)=45.cosβ=cos[α-(α-β)]=cosαcos(α-β)+sinαsin(α-β)=-32×45+12×(-35)=-43+310.B组1.cos2α1+sin2α·1+tanα1-tanα的值为________.解析:cos2α1+sin2α·1+tanα1-tanα=cos2α-sin2α(sinα+cosα)2·1+tanα1-tanα=cosα-sinαsinα+cosα·1+tanα1-tanα=1-tanα1+tanα·1+tanα1-tanα=1.2.已知cos(π4+x)=35,则sin2x-2sin2x1-tanx的值为________.解析:∵cos(π4+x)=35,∴cosx-sinx=352,∴1-sin2x=1825,sin2x=725,∴sin2x-2sin2x1-tanx=2sinx(cosx-sinx)cosx-sinxcosx=sin2x=725.3.已知cos(α+π3)=sin(α-π3),则tanα=_______解析:cos(α+π3)=cosαcosπ3-sinαsinπ3=12cosα-32sinα,sin(α-π3)=sinαcosπ3-cosαsinπ3=12sinα-32cosα,由已知得:(12+32)sinα=(12+32)cosα,tanα=1.4.设α∈(π4,3π4),β∈(0,π4),cos(α-π4)=35,sin(3π4+β)=513,则sin(α+β)=________.解析:α∈(π4,3π4),α-π4∈(0,π2),又cos(α-π4)=35,∴sin(α-π4)=45.∵β∈(0,π4),∴3π4+β∈(3π4,π).∵sin(3π4+β)=513,∴cos(3π4+β)=-1213,∴sin(α+β)=-cos[(α-π4)+(3π4+β)]=-cos(α-π4)·cos(3π4+β)+sin(α-π4)·sin(3π4+β)=-35×(-1213)+45×513=5665,即sin(α+β)=5665.5.已知cosα=13,cos(α+β)=-13,且α,β∈(0,π2),则cos(α-β)的值等于________.解析:∵α∈(0,π2),∴2α∈(0,π).∵cosα=13,∴cos2α=2cos2α-1=-79,∴sin2α=1-cos22α=429,而α,β∈(0,π2),∴α+β∈(0,π),∴sin(α+β)=1-cos2(α+β)▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓=223,∴cos(α-β)=cos[2α-(α+β)]=cos2αcos(α+β)+sin2αsin(α+β)=(-79)×(-13)+429×223=2327.6.已知角α在第一象限,且cosα=35,则1+2cos(2α-π4)sin(α+π2)=________.解析:∵α在第一象限,且cosα=35,∴sinα=45,则1+2cos(2α-π4)sin(α+π2)=1+2(22cos2α+22sin2α)cosα=2cos2α+2sinαcosαcosα=2(sinα+cosα)=2(45+35)=145.7.已知a=(cos2α,sinα),b=(1,2sinα-1),α∈(π2,π),若a·b=25,则tan(α+π4)的值为________.解析:a·b=cos2α+2sin2α-sinα=1-2sin2α+2sin2α-sinα=1-sinα=25,∴sinα=35,又α∈(π2,π),∴cosα=-45,tanα=-34,∴tan(α+π4)=tanα+11-tanα=17.8.tan10°tan70°tan70°-tan10°+tan120°的值为______.解析:由tan(70°-10°)=tan70°-tan10°1+tan70°·tan10°=3,故tan70°-tan10°=3(1+tan70°tan10°),代入所求代数式得:tan70°tan10°3(1+tan70°tan10°)+tan120°=tan70°tan10°3(1+tan70°tan10°)-3=tan70°tan10°3tan70°tan10°=33.9.已知角α的终边经过点A(-1,15),则sin(α+π4)sin2α+cos2α+1的值等于________.解析:∵sinα+cosα≠0,cosα=-14,∴sin(α+π4)sin2α+cos2α+1=24cosα=-2.10.求值:cos20°sin20°·cos10°+3sin10°tan70°-2cos40°.解:原式=cos20°cos10°sin20°+3sin10°sin70°cos70°-2cos40°=cos20°cos10°+3sin10°cos20°sin20°-2cos40°=cos20°(cos10°+3sin10°)sin20°-2cos40°=2cos20°(cos10°sin30°+sin10°cos30°)sin20°-2cos40°=2cos20°sin40°-2sin20°cos40°sin20°=2.11.已知向量m=(2cosx2,1),n=(sinx2,1)(x∈R),设函数f(x)=m·n-1.▁▂▃▄▅▆▇█▉▊▋▌精诚凝聚=^_^=成就梦想▁▂▃▄▅▆▇█▉▊▋▌▃▄▅▆▇██■▓点亮心灯~~~///(^v^)\\\~~~照亮人生▃▄▅▆▇██■▓(1)求函数f(x)的值域;(2)已知锐角△ABC的三个内角分别为A,B,C,若f(A)=513,f(B)=35,求f(C)的值.解:(1)f(x)=m·n-1=(2cosx2,1)·(sinx2,1)-1=2cosx2sinx2+1-1=sinx.∵x∈R,∴函数f(x)的值域为[-1,1].(2)∵f(A)=513,f(B)=35,∴sinA=513,sinB=35.∵A,B都为锐角,∴cosA=1-sin2A=1213,cosB=1-sin2B=45.∴f(C)=sinC=sin[π-(A+B)]=sin(A+B)=sinAcosB+cosAsinB=513×45+1213×35=5665.∴f(C)的值为5665.12.(2010年南京调研)已知:0απ2βπ,cos(β-π4)=13,sin(α+β)=45.(1)求sin2β的值;(2)求cos(α+π4)的值.解:(1)法一:∵cos(β-π4)=cosπ4cosβ+sinπ4sinβ=22cosβ+22sinβ=13,∴cosβ+sinβ=23,∴1+sin2β=29,∴sin2β=-79.法二:sin2β=cos(π2-2β)=2cos2(β-π4)-1=-79.(2)∵0απ2βπ,∴π4β-π43π4,π2α+β3π2,∴sin(β-π4)0,cos(α+β)0.∵cos(β-π4)=13,sin(α+β)=45,∴sin(β-π4)=223,cos(α+β)=-35.∴cos(α+π4)=cos[(α+β)-(β-π4)]=cos(α+β)cos(β-π4)+sin(α+β)sin(β-π4)=-35×13+45×223=82-315.
本文标题:高三数学一轮复习AB组教案15《同角三角函数的基本关系》
链接地址:https://www.777doc.com/doc-1727904 .html