您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 新人教版九年级上册24.1.4-圆周角课件PPT
24.1.4圆周角一.复习引入:1.圆心角的定义?.OBC在同圆(或等圆)中,如果圆心角、弧、弦、弦心距有一组量相等,那么它们所对应的其余三组量都分别相等。答:顶点在圆心的角叫圆心角2.上节课我们学习了一个反映圆心角、弧、弦、弦心距四组量之间关系的一个结论,这个结论是什么?顶点在圆上,并且两边都与圆相交的角,叫做圆周角.●OBACBACBACBACBACBAC角两边是圆的两条弦的角辩一辩图中的∠CDE是圆周角吗?CDECDECDECDE类比圆心角探知圆周角•在同圆或等圆中,同弧或等弧所对的圆心角相等.•在同圆或等圆中,同弧或等弧所对的圆周角有什么关系?为了解决这个问题,我们先探究同弧所对的圆周角和圆心角之间有的关系.你会画同弧所对的圆周角和圆心角吗?•如图,观察圆周角∠ABC与圆心角∠AOC,它们的大小有什么关系?•说说你的想法,并与同伴交流.●OABC●OABC●OABC圆周角和圆心角的关系教师提示:注意圆心与圆周角的位置关系.图23.1.11圆周角和圆心角的关系•1.首先考虑一种特殊情况:•当圆心(O)在圆周角(∠ABC)的一边(BC)上时,圆周角∠ABC与圆心角∠AOC的大小关系.∵∠AOC是△ABO的外角,∴∠AOC=∠B+∠A.∵OA=OB,●OABC∴∠A=∠B.∴∠AOC=2∠B.即∠ABC=∠AOC.21同弧所对的圆周角等于它所对的圆心角的一半.老师期望:你可要理解并掌握这个模型.•如果圆心不在圆周角的一边上,结果会怎样?•2.当圆心(O)在圆周角(∠ABC)的内部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?老师提示:能否转化为1的情况?过点B作直径BD.由1可得:●O∴∠ABC=∠AOC.21同弧所对的圆周角等于它所对的圆心角的一半.ABCD∠ABD=∠AOD,∠CBD=∠COD,2121圆周角和圆心角的关系●OABC圆周角和圆心角的关系•如果圆心不在圆周角的一边上,结果会怎样?•3.当圆心(O)在圆周角(∠ABC)的外部时,圆周角∠ABC与圆心角∠AOC的大小关系会怎样?老师提示:能否也转化为1的情况?过点B作直径BD.由1可得:●O∴∠ABC=∠AOC.21同弧所对的圆周角等于它所对的圆心角的一半.∠ABD=∠AOD,∠CBD=∠COD,2121ABC●OABC•综上所述,圆周角∠ABC与圆心角∠AOC的大小关系是:•同弧所对的圆周角等于它所对的圆心角的一半.●OABC●OABC●OABC即∠ABC=∠AOC.21如图所示,∠ADB、∠ACB、∠AOB分别是什么角?它们有何共同点?∠ADB与∠ACB有什么关系?同弧所对的圆周角相等.(等弧)思考:相等的圆周角所对的弧相等吗?在同圆或等圆中都等于这条弧所对的圆心角的一半.圆周角定理:•1.如图,在⊙O中,∠BOC=50°,求∠A的大小.●OBAC解:∠A=∠BOC=25°.21ABOC如图,AB是直径,则∠ACB=____90o半圆(或直径)所对的圆周角是直角,90度的圆周角所对的弦是直径。2.试找出下图中所有相等的圆周角。ABCD12345678∠2=∠7∠1=∠4∠3=∠6∠5=∠83:已知⊙O中弦AB的等于半径,求弦AB所对的圆心角和圆周角的度数。OAB圆心角为60度圆周角为30度或150度。4.如图,∠A是圆O的圆周角,∠A=40°,求∠OBC的度数。PDBOAC例:如图,AB是⊙O的直径AB=10cm,弦AC=6cm,∠ACB的平分线交⊙O于点D.求BC,AD,BD的长.106练习:如图AB是⊙O的直径,C,D是圆上的两点,若∠ABD=40°,则∠BCD=_____.ABOCD40°这节课你有什么收获和体会,和大家一起分享一下吧!圆周角•当球员在B,D,E处射门时,他所处的位置对球门AC分别形成三个张角∠ABC,∠ADC,∠AEC.这三个角有何特点?它们的大小有什么关系?.●OBACBACBACBACBACBACBACDEDE顶点在圆上,并且两边都与圆相交的角,叫做圆周角.
本文标题:新人教版九年级上册24.1.4-圆周角课件PPT
链接地址:https://www.777doc.com/doc-1732464 .html