您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 习题/试题 > 高数(上)习题及答案(极限)
1复习题(一)一、定义域(1)函数的定义域()2lg31−+−=xxy(2)函数的定义域1412++−=xxy(3)函数的定义域为[0,1],则定义域为()xf()⎟⎠⎞⎜⎝⎛−+⎟⎠⎞⎜⎝⎛+=4141xfxfxg二、求极限(1)⎟⎠⎞⎜⎝⎛+→xxxxx1sin2sin3lim00312limsinsin22xxxxx→⎛⎞⎜⎟=+⎜⎟⎜⎟⎝⎠00312limlimsinsin22xxxxxx→→=+003lim2sin2lim2xxxx→→=32=()lim0mmnnxaxaaxa→−≠−11limmnxamxnx−−→=limmnxamxn−→=mnman−=xxx⎟⎠⎞⎜⎝⎛+∞→21lim222lim1xxx→∞⎡⎤⎛⎞⎢⎥=+⎜⎟⎢⎥⎝⎠⎣⎦2222lim1xxx→∞⎡⎤⎛⎞⎢⎥=+⎜⎟⎢⎥⎝⎠⎣⎦2e=xxxlnlim∞→1lim0xx→∞==4586lim224+−+−→xxxxx42lim1xxx→−=−23=⎟⎠⎞⎜⎝⎛−→xxxxxtan2sinlim000sin2n1lim2lim2cosxxxsixxxx→→=⋅−⋅000sin2n12limlimlim2cosxxxxsixxxx→→→=⋅−⋅1==211lim20−++→xxx()20lim11xx+→=++1sinlim0−→xxex0slim1xxcoxe→==;exxex−−→1lnlim11limxexe→==;()11lim22−−+∞→xxx222lim011xxx→∞==++−;xxx1sinlim∞→1sinlim11xxx→∞==xxx211lim⎟⎠⎞⎜⎝⎛−∞→221lim1xxex−−−→∞⎡⎤⎛⎞=−=⎢⎥⎜⎟⎝⎠⎢⎥⎣⎦xxx3cos5coslim2π→25sin5lim3sin3xxxπ→=53=−3022sinlimln0sinlimxxxxxxxex+→+→⎛⎞=⎜⎟⎝⎠20cossinlim2sinxxxxxxxe+→−⋅=0sin2lim21xxxxe+→−==()11111lnlimlimln1ln1xxxxxxxx→→−−⎛⎞−=⎜⎟−⋅−⎝⎠111lim1lnxxxxx→−=−+11lim1lnxxxxx→−=−+11lim2lnxx→=+12=⎟⎠⎞⎜⎝⎛−−→111lim0xxex()01lim1xxxexxe→−−=−01lim1xxxxeexe→−=−+0lim2xxxxeexe→=+01lim2xx→=+12=1131232limlim12112xxxxxxxx++→∞→∞⎛⎞+⎜⎟+⎛⎞=⎜⎟⎜⎟+⎝⎠⎜⎟+⎝⎠411312lim112xxxxx++→∞⎛⎞+⎜⎟⎝⎠=⎛⎞+⎜⎟⎝⎠2323122331122lim111122xxxxxxx→∞⎡⎤⎛⎞⎛⎞⎢⎥++⎜⎟⎜⎟⎢⎥⎝⎠⎝⎠⎢⎥⎣⎦=⎡⎤⎛⎞⎛⎞++⎢⎥⎜⎟⎜⎟⎝⎠⎝⎠⎢⎥⎣⎦e=解法2:原式12lim121xxx+→∞⎛⎞=+⎜⎟+⎝⎠211222lim121xxx++→∞⎛⎞=+⎜⎟+⎝⎠2112222lim112121xxxx+→∞⎛⎞⎛⎞=++⎜⎟⎜⎟++⎝⎠⎝⎠e=解法1:xxxx30sin1sin1lim−−−→()30sinlimsin1sin1xxxxxx→−=−+−301sinlim2sinxxxx→−=2011coslim23sincosxxxx→−=220112lim23xxx→=112=解法2:xxxx30sin1sin1lim−−−→3011sin22limxxxx→−+=301sinlim2xxxx→−+=5201cos1lim23xxx→−+=220112lim23xxx→=112=()221arctan12limlim111sincosxxxxxxxπ→+∞→+∞−−+=−洛比达法则22lim1xxx→+∞=+1=不存在xxx1sinarctan2lim−∞→π()xxxtan2sinlimπ→,tansinxyx=解:令tanlnsinyxx=⋅则ln22limlimtanlnsinxxyxxππ→→=⋅ln2lnsinlim1tanxxxπ→=222cossinlimsectanxxxxxπ→=−22coslimsinsinxxxxπ→=−⋅21limsin22xxπ→=0=,02limlnxyeπ→=ln2lim1xyπ→=6解:sinsinln00limlimxxxxxxe++→→=0limsinlnxxxe+→=00lnlimsinlnlim1sinxxxxxx++→→=021limcossinxxxx+→=−⋅20sinlimcosxxxx+→=−⋅0limsinxx+→=−0=sin0lim1xxx+→∴=xxx3tan6sinlim6⎟⎠⎞⎜⎝⎛−→ππ,6txπ=−解:令06limsintan3limsincot36txxxttππ→→⎛⎞−=⎜⎟⎝⎠则0cos3limsinsin3tttt→=⋅0sinlimsin3ttt→=13=xxxx5sinsin3sinlim0−→00sin3sin2sin2coslimlimsin5sin5xxxxxxxx→→−=解:02sin2limsin5xxx→=45=7;⎟⎟⎟⎟⎠⎞⎜⎜⎜⎜⎝⎛+→2sin12coslim220xxxx2222200212limcoslimcossinsin22xxxxxxxxx→→⎛⎞⎛⎞⎜⎟⎜⎟+=+⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠解:222002limcoslimsin2xxxxxx→→=+2220022limcoslim2sin2xxxxxx→→=+⋅0=30sin1tan1limxxxx+−+→330011tansin1tan1sin22limlimxxxxxxxx→→−+−+=解:301tansinlim2xxxx→−=()30sin1cos1lim2cosxxxxx→−=2011coslim2xxx→−=01sinlim22xxx→=14=;()xxxx2coscos11lim20−→8()201lim1coscos2xxxx→−解:;()1ln10lim−→+xexx()()1lnln1ln100limlimxxxeexxxe++−−→→=解:()0lnlimln1xxxee+→−=01limxxxexee+→−=0limxxxxeexee+→+=01lim1xxe+→+=e=(2),则()32lim=⎟⎠⎞⎜⎝⎛−+∞→xxkxkx=k(a)(b)(c)(dddd)2e21e23ln31221lim321kxkkxxkkxkx−→∞−⎡⎤⎛⎞⎢⎥+⎜⎟⎢⎥⎝⎠⎣⎦=⎡⎤⎛⎞⎢⎥−⎜⎟⎢⎥⎝⎠⎣⎦分析:32133ln33kkkeeke−⇒=⇒=⇒=(12)数列的极限是()nnnxncos+=(aaaa)1(b)-1(c)0(d)不存在cos1limlimlim1cos1nnnnnnxnnn→∞→∞→∞+⎛⎞==+=⎜⎟⎝⎠分析:(16)()()()()=+++∞→3321limnnnnn(a)0(b)1(c)3(d)69()()()3123123limlim1111nnnnnnnnn→∞→∞+++⎛⎞⎛⎞⎛⎞=+++=⎜⎟⎜⎟⎜⎟⎝⎠⎝⎠⎝⎠分析:(18)()=→xxx3sin5sinlimπ(a)(b)-1(c)1(dddd)34−35sin55cos55limlimsin33cos33xxxxxxππ→→==分析:(22)()=+−++∞→xxxxxsin31lim2(a)-1(bbbb)-2(c)1(d)22211313limlim2sinsin1xxxxxxxxx→+∞→+∞+−+−==−++分析:(23)若,则()()51sinlim21=−++→xbaxxx(a)(b)3,5==ba6,7=−=ba(cccc)(d)4,3−==ba1,0−==ba()()2211lim5lim01sin1xxxaxbxaxbbax→→++=++==−−−分析:由,可知,即()()()1111lim5sin1xxxabax→−++=−−=−将代入()1lim153xxaa→++==得,即(26)()=⎟⎟⎠⎞⎜⎜⎝⎛−+++∞→112cos1lim22xxxxxx(a)0(b)1(cccc)2(d)3102222121121limcoslimcoslim11xxxxxxxxxxxxx→∞→∞→∞⎛⎞+++++=+⎜⎟−−⎝⎠分析:221121limcoslim11xxxxxxx→∞→∞++=+−2=(28)如果,则()322sin3lim0=→xmxx=m(a)1(b)2(c)4/9(d)9/4003sin23sin2324limlim2323239xxmmxmmxmmmxmx→→=⇒=⇒=⇒=分析:(29)()=⎟⎠⎞⎜⎝⎛+++∞→22221limnnnnn⋯(a)0(b)(cccc)1/2(d)1∞()2222111212limlim2nnnnnnnnn→∞→∞+⎛⎞+++==⎜⎟⎝⎠⋯分析:(30)若,则()2134lim2=⎟⎟⎠⎞⎜⎜⎝⎛++−+∞→baxxxx(a)(bbbb)6,2==ba2,4−=−=ba(c)(d)1,3==ba2,0−==ba243lim24041xxaxbaax→∞⎛⎞+++=+=⇒=−⎜⎟−⎝⎠分析:由,可知()43lim24221xbxbbbx→∞+−+=⇒+=⇒=−−(31)的值为()xxxxsin1sinlim20→(a)1(b)(c)不存在(dddd)0∞1120011sinsin0limlim0sinsin1xxxxxxxxx→→===分析:(32)()=∞→222sinlimxmxx(aaaa)0(b)(c)(d)∞2m22m2222sin1limlimsin022xxmxmxxx→∞→∞==分析:三、函数连续(5)已知函数在连续,则()()()⎪⎩⎪⎨⎧=≠−=0,0,211xbxxxfx0=x=b()()0lim0xfxf→=分析:函数在一点连续的充分必要条件是而()()1200limlim12xxxfxxe−→→=−=()0fb=2be−∴=(6)已知函数在连续,则()()()⎪⎩⎪⎨⎧=≠+=0,0,21lnxbxxxxg0=x=b解:()()()()110000ln12limlimlimln12lnlim122xxxxxxxfxxxx→→→→+==+=+=()0fb=2b∴=(11)已知函数在内连续,则()()⎪⎩⎪⎨⎧=≠=00,2sinxaxxxxf()+∞∞−,=a12解:,()()sin2,00xxfxxax⎧≠⎪=−∞+∞⎨⎪=⎩要使在,内连续sin2xxx≠∵当0时,是连续函数()sin2,00xxfxxxax⎧≠⎪∴=⎨⎪=⎩只要使在=0处连续()()0lim0xfxf→=即只要使0sin2lim222xxaax→=⇒=(20)已知函数在连续,则()()⎪⎩⎪⎨⎧=+≠−−=11,113xaxxxxxf1=x=a(aaaa)2(b)-2(c)1(d)-1()31,111xxfxxxax⎧−≠⎪=−⎨⎪+=⎩分析:要使有意义()()1lim1xfxf→=须使311lim13121xxaaax→−=+⇒=+⇒=−即(34)若在连续,则()()⎪⎪⎩⎪⎪⎨⎧+==01sin00sin1xbxxxaxxxxf0=x(a)(bbbb)1,1−==ba1,1==ba(c)(d)1,1=−=ba1,1−=−=ba13()1sin0001sin0xxxfxaxxxbxx⎧⎪⎪===⎨⎪⎪+⎩分析:要使在处连续()()()00limlim0xxfxfxf−+→→==只要使0011limsinlimsinxxxxbaxx−+→→⎛⎞=+=⎜⎟⎝⎠只要使即a=1,b=1(36)已知在连续,则()()⎪⎩⎪⎨⎧≤+=02sin02xxbxxbxaxf0=x(a)(b)1,0==ba0,1==ba(c)(d)ba2=ab2=()200sinlimlim2xxbxabxax−+→→+==由题意,只要使()200limsinli
本文标题:高数(上)习题及答案(极限)
链接地址:https://www.777doc.com/doc-1734032 .html