您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 酒店餐饮 > 高一数学必修1期中考试测试题及答案
第1页共4页高一数学必修一期中考试试卷一、选择题(共10道小题,每道题5分,共50分.请将正确答案填涂在答题卡上)1.已知全集U={1,2,3,4,5,6,7},A={3,4,5},B={1,3,6},则A∩(CUB)等于()A.{4,5}B.{2,4,5,7}C.{1,6}D.{3}2.函数()lg(31)fxx的定义域为()A.RB.1(,)3C.1[,)3D.1(,)33.如果二次函数21yaxbx的图象的对称轴是1x,并且通过点(1,7)A,则()A.a=2,b=4B.a=2,b=-4C.a=-2,b=4D.a=-2,b=-44.函数||2xy的大致图象是()5.如果(01)abaa且,则()A.2log1abB.1log2abC.12logabD.12logba6、三个数23.0a,3.022,3.0logcb之间的大小关系是()A.a﹤c﹤bB.a﹤b﹤cC.b﹤a﹤cD.b﹤c﹤a7.下列说法中,正确的是()A.对任意x∈R,都有3x>2x;B.y=(3)-x是R上的增函数;C.若x∈R且0x,则222log2logxx;D.在同一坐标系中,y=2x与2logyx的图象关于直线yx对称.8.如果函数2(1)2yxax在区间(-∞,4]上是减函数,那么实数a的取值范围是()A.a≥9B.a≤-3C.a≥5D.a≤-79.若函数()fx为定义在R上的奇函数,且在(0,)内是增函数,又(2)f0,则不等式0)(xxf的解集为学科网A.(2,0)(2,)B.(,2)(0,2)学科网C.(,2)(2,)D.)2,0()0,2(10.已知函数yfx()1定义域是[]23,,则yfx()21的定义域是()A.[]052,B.[]14,C.[]55,D.[]37,二、填空题(共5道小题,每道题5分,共25分。请将正确答案填写在答题卡中)11.已知函数()yfn,满足(1)2f,且(1)3()fnfnn,N,则(3)f的值为_______________.12.函数23()log(210)fxxx的值域为_______________.第2页共4页13.计算:641logln3842log323e=14.函数)2(2)2(32)(xxxxfx,则)]3([ff的值为.15.数学老师给出一个函数()fx,甲、乙、丙、丁四个同学各说出了这个函数的一条性质甲:在(,0]上函数单调递减;乙:在[0,)上函数单调递增;丙:在定义域R上函数的图象关于直线x=1对称;丁:(0)f不是函数的最小值.老师说:你们四个同学中恰好有三个人说的正确.那么,你认为_________说的是错误的.三、解答题(6道小题,共75分)16.(本题满分12分)当),0(x时,幂函数352)1(mxmmy为减函数,求实数m的值.17、(本题满分12分)已知函数0)(xx-20)(x)(2xxf,试解答下列问题:①求)]2([ff的解析式。②求方程)(xf=x21的解。18.(本题满分12分)已知奇函数1)(2xbaxxf在1,1上是增函数,且52)21(f①确定函数)(xf的解析式。②解不等式)()1(tftf<019.(本题满分12分)已知全集RU,集合1,4xxxA或,213xxB,(1)求BA、)()(BCACUU;(2)若集合1212kxkxM是集合A的子集,求实数k的取值范围.20.(本题满分12分)已知函数21()1fxx.(1)设()fx的定义域为A,求集合A;(2)判断函数()fx在(1,+)上单调性,并用定义加以证明.21.(本题满分15分)已知函数1()(01)xfxaaa且(1)若函数()yfx的图象经过P(3,4)点,求a的值;(2)比较1(lg)(2.1)100ff与大小,并写出比较过程;(3)若(lg)100fa,求a的值.第3页共4页二、填空题(每道小题4分,共24分)三、解答题(共44分)15.解:(1)由210x,得1x,所以,函数21()1fxx的定义域为{|1}xxR………………………4分(2)函数21()1fxx在(1,)上单调递减.………………………………6分证明:任取12,(1,)xx,设12xx,则210,xxx12122122222112()()1111(1)(1)xxxxyyyxxxx……………………8分121,1,xx22121210,10,0.xxxx又12xx,所以120,xx故0.y因此,函数21()1fxx在(1,)上单调递减.………………………12分17.解:⑴∵函数()yfx的图象经过(3,4)P∴3-14a,即24a.………………………………………2分又0a,所以2a.………………………………………4分⑵当1a时,1(lg)(2.1)100ff;当01a时,1(lg)(2.1)100ff.……………………………………6分因为,31(lg)(2)100ffa,3.1(2.1)fa当1a时,xya在(,)上为增函数,∵33.1,∴33.1aa.即1(lg)(2.1)100ff.当01a时,xya在(,)上为减函数,∵33.1,∴33.1aa.即1(lg)(2.1)100ff.………………………………………8分⑶由(lg)100fa知,lg1100aa.918126100130.729a11(1,0)(1,)14乙第4页共4页所以,lg1lg2aa(或lg1log100aa).∴(lg1)lg2aa.∴2lglg20aa,………………………………………10分∴lg1a或lg2a,所以,110a或100a.………………………………………12分说明:第⑵问中只有正确结论,无比较过程扣2分.18.解:(1)()fxA,()gxA.………………………………………2分对于()fxA的证明.任意12,xxR且12xx,22222121212121122212()()2()()222241()04fxfxxxxxxxxxxxfxx即1212()()()22fxfxxxf.∴()fxA……………………………3分对于()gxA,举反例:当11x,22x时,1222()()11(log1log2)222gxgx,122221231()logloglog22222xxg,不满足1212()()()22gxgxxxg.∴()gxA.………………………4分⑵函数2()3xfx,当(0,)x时,值域为(0,1)且21(1)32f.……6分任取12,(0,)xx且12xx,则121211221221212222222222()()1222()2222333122221222023333233xxxxxxxxxxfxfxxxf即1212()()()22fxfxxxf.∴2()3xfxA.…………………8分说明:本题中()fx构造类型()xfxa1(1)2a或()kfxxk(1)k为常见.
本文标题:高一数学必修1期中考试测试题及答案
链接地址:https://www.777doc.com/doc-1739696 .html