您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版八年级数学上册-第7讲-角平分线的判定与性质-辅导讲义(无答案)
第1页BACNMO第7讲角平分线的判定与性质【知识点与方法梳理】角平分线的性质定理:角平分线上的点到角两边的距离相等。角平分线的判定定理:到一个角的两边的距离相等的点,在这个角的平分线上。作已知角的平分线的方法:已知:∠AOB(如图)求作:∠AOB的角平分线OC.作法:1.以O为圆心,适当长为半径作弧,交OA于M,交OB于N。2.分别以M、N为圆心,大于12MN的长为半径作弧,两弧在∠AOB内部交于点C。3.作射线OC,射线OC即为所求。【经典例题】例1.已知:如图,△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于E,F在AC上BD=DF,求证:CF=EB例2.已知:如图,AD、BE是△ABC的两条角平分线,AD、BE相交于O点求证:O在∠C的平分线上例3.如图AB∥CD,∠B=90°,E是BC的中点。DE平分∠ADC,求证:AE平分∠DAB。【经典练习】1如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,求证∠BAO=∠CAO2.如图,OC是∠AOB的角平分线,P是OC上一点,PD⊥OA交于点D,PE⊥OB交于点E,F是OC上除点P、O外一点,连结DF、EF,则DF与EF的关系如何?证明你的结论。3.如图,在CD上求作一点P,使它到OA,OB的距离相等(写出作法)。4.要将如图中的∠MON平分,小梅设计了如下方案:在射线OM,ON上分别取OA=OB,过A作DA⊥OM于A,交ON于D,过B作EB⊥ON于B交OM于E,AD,EB交于点C,过O,C作射线OC即为MON的平分线,试说明这样做的理由.5.如图△ABC中,AD是它的角平分线,且BD=CD,DE、DF分别垂直AB、AC,垂足为E、F,求证:EB=FCACDEBFFEDCBAOPODCBADEBAC第2页21DBPACFEDPABCDAEFBC6.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC面积是282cm,AB=8cm,AC=6cm,求DE的长.【巩固练习】基础训练题1.如图,在Rt△ABC中,∠C=90°,BD是∠ABC的平分线,交AC于点D,若CD=n,AB=m,则△ABD的面积是()A.m+nB.21mnC.mn2D.mn2.如图,已知AC平分∠PAQ,点B,B′分别在边AP,AQ上,如果添加一个条件,即可推出AB=AB′,那么该条件不可以是()A、BB′⊥ACB、BC=B′CC、∠ACB=∠ACB′D、∠ABC=∠AB′C3、如图,FD⊥AO于D,FE⊥BO于E,下列条件:①OF是∠AOB的平分线;②DF=EF;③DO=EO;④∠OFD=∠OFE。其中能够证明△DOF≌△EOF的条件的个数有()A.1个B.2个C.3个D.4个4.如图,在ΔABC中,,FE、分别是AB、AC上的点,EF=5cm,BP、CP分别是∠ABC和∠ACB的角平分线,且PD⊥BC于D,PE⊥AB于E,PF⊥AC于F,已知PD=4cm则ΔPEF的周长是___________cm.5.如图(7):AC⊥BC,BM平分∠ABC且交AC于点M,N是AB的中点且BN=BC。求证:(1)MN平分∠AMB,(2)∠A=∠CBM。6.如图:在△ABC中,∠B,∠C相邻的外角的平分线交于点D。求证:点D在∠A的平分线上。7.如图8、AB=CD,△PCD的面积等于△PAB的面积,求证:OP平分∠BOD。8.如图9、在△ABC中,∠B=60°,△ABC的角平分线AD、CE交于点O,求证:AE+CD=AC。能力提高题1.已知:如图,∠C=2∠B,∠1=∠2,求证:AB=AC+CD。2.已知,如图2,∠1=∠2,P为BN上一点,且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°。3、如图,已知∠CAD=∠CDA,AC=BD,E在BC上,DE=EC,求证:AEBDCFNM(图7)CBADEOBCA第3页AD平分∠BAEABDEC(提示:延长AE到P,使得EP=AE,连接CP,证三角形ABD与PAC全等)4.如图,已知AB∥CD,O是∠ACD,∠CAB的平分线的交点,且OE⊥AC于E点,OE=12,求AB与CD之间的距离ABEOCD
本文标题:人教版八年级数学上册-第7讲-角平分线的判定与性质-辅导讲义(无答案)
链接地址:https://www.777doc.com/doc-1741128 .html