您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 《等差数列及其通项公式》说课稿高品质版
《等差数列及其通项公式》说课稿本节课选自山东省中等职业教育规划教材《数学》第一册第四章《等差数列》(第一课时)的内容。一、教材分析1、教材的地位和作用:数列是职专数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面,数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。2、教学目标根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标1、在知识上:理解并掌握等差数列的概念,并用定义判断一个数列是否为等差数列;了解等差数列的通项公式的推导过程及思想,会求等差数列的公差及通项公式,并能在解题中灵活应用;初步引入“数学建模”的思想方法并能运用。2、在能力上:培养学生观察、分析、归纳、推理的能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。3、在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。3、教学重点根据教学大纲的要求确定本节课的教学重点为:1、等差数列的概念。2、等差数列的通项公式及应用。4、教学难点1、用数学建摸的思想解决实际问题2、通项公式的灵活运用二、学情分析由于是中专学生,他们学习基础差且参差不齐,幸好经过几个月的磨合,学生对学习数学产生了浓厚兴趣。课堂上均能听老师的指挥,能大胆发言,乐于做练习,基本堂堂清。三、教法分析针对中专生思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。四、学法指导在引导分析时,留出学生的思考空间,让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。五、教学程序本节课的教学过程由(一)新课导入(二)新课讲授(三)讲解范例(四)课堂小结(五)作业布置(六)板书设计,六个教学环节构成。【新课导入】创设情景上节课我们学习了数列的定义和表示数列的几种方法——列举法、通项公式、递推公式。这些方法从不同的角度反映数列的特点。今天我们来学习一类特殊的数列。下面我们观察这样一些实例:(1)第25届到第28届奥运会举行的年份依次为1992,1996,2000,2004.(2)在过去的三百多年里,人们分别在下列时间里观测到了哈雷慧星:1682,1758,1834,1910,1986(3)某舞蹈队对舞蹈员进行排队,队员身高分别为(单位:m)1.68,1.66,1.64,1.62,1.60,1.58请同学们根据规律在()填上合适的数1992,1996,2000,2004,()1682,1758,1834,1910,1986,()1.68,1.66,1.64,1.62,1.60,1.58,()观察并思考:请同学们仔细观察一下,看看以上三个数列有什么共同特征?共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);(误:每相邻两项的差相等——应指明作差的顺序是后项减前项),我们给具有这种特征的数列一个名字——等差数列通过练习引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察以上数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。【新课讲授】(一)、等差数列定义一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差,常用字母表示.强调:①“从第二项起”满足条件;②公差d一定是由后项减前项所得;③每一项与它的前一项的差必须是同一个常数(强调“同一个常数”);在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:an+1-an=d(n≥1)练习1:指出刚才实例中各等差数列的公差;练习2:判断下列数列是否是等差数列(1)9,8,7,6,5,4,……;(2)-6,-4,-2,0,……;(3)1,-1,1,-1,……;(4)1,2,4,7,11,16,……;(5)a,2a,3a,4a,……;(6)0,0,0,0,0,0,…….指出:其中第一个数列公差0,第二个数列公差0,第三个数列公差=0强调:1、公差可以是正数、负数,也可以是02、对于一个无穷数列,通常在写出它的前n项后,接着写省略号,这时要从上下文能知道省略号写出的项是什么想一想:设{an}是一个首项为a1,公差为d的等差数列,你能够写出它的第n项an吗(二)、等差数列的通项公式(重点部分)通项公式:an=a1+(n-1)d(n∈N*)推导过程:若等差数列的首项是a1,公差是,则据其定义可得:a2-a1=da3-a2=da4-a3=d……an-2-an-1=dan-an-1=d等式迭加得到等差数列的通项公式an=a1+(n-1)d(当n=1时,上式两边都等于a1)n∈N*,公式成立(三)讲解范例:例1:求等差数列12,8,4,0,‥‥的通项公式与第10项;解:因为,a1=12,d=8–12=–4,所以这个等差数列的通项公式为an=12+﹝n–1﹞×﹝–4﹞即an=16–4n所以a10=16–4×10=-24练习:求等差数列4,7,10,‥‥的通项公式与第6项;例2:等差数列–1,2,5,8,‥‥的第几项是152?解:根据a1=-1,d=2-﹝-1﹞=3,an=152,从通项公式得出152=-1+(n-1)解得n=52练习:等差数列3,5,7,9,‥‥的第几项是21?评注∶an=a1+(n-1)d中,an,a1,n,d这四个变量,知道其中三个量就可以求余下的一个量;这一环节是使学生通过例题和练习,增强对通项公式含义的理解以及对通项公式的运用,提高解决实际问题的能力。通过例1和例2向学生表明:要用运动变化的观点看等差数列通项公式中的a1、d、n、an这4个量之间的关系。当其中的部分量已知时,可根据该公式求出另一部分量。例3(实际建模问题)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次.奥运会如因故不能举行,届数照算.(1)试写出由举行奥运会的年份构成的数列的通项公式;(2)2008年北京奥运会是第几届?2050年举行奥运会吗?解:(1)由题意知,举行奥运会的年份构成的数列是一个以1896为首项,4为公差的等差数列,其通项公式an=1896+4(n-1)=4n+1892(2)假设an=2008,即4n+1892=2008,解得:n=29假设an=2050,即2050=4n+1892此方程无整数解答:所求通项公式为an=4n+1892;2008年是第29届奥运会,2050年不举行奥运会.练习:全国统一鞋号中,成年男鞋有14种尺码,其中最小尺码是23.5cm,各相邻两个尺码都相差0.5cm.其中最大的尺码是多少?练习、建造房屋时要设计楼梯,已知某大楼第2层的楼底离地面的高度为3米,第三层离地面5.8米,若楼梯设计为等高的16级台阶,问每级台阶高为多少米?设置此题的目的:1.加强同学们对应用题的综合分析能力,2.通过数学实际问题引出等差数列问题,激发了学生的兴趣;3.再者通过数学实例展示了“从实际问题出发经抽象概括建立数学模型,最后还原说明实际问题的“数学建模”的数学思想方法【课堂小结】(由学生总结这节课的收获)1.等差数列的概念及数学表达式.强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数2.等差数列的通项公式an=a1+(n-1)d(n∈N*)会知三求一3.用“数学建模”思想方法解决实际问题【作业布置】必做题:课本11页A组1,2题选做题:课本P284B组第6、7题(目的:通过分层作业,提高同学们的求知欲和满足不同层次的学生需求)【板书设计】在板书中突出本节重点,将强调的地方如定义中,“从第二项起”及“同一常数”等几个字用红色粉笔标注,同时给学生留有作题的地方,整个板书充分体现了精讲多练的教学方法。§3.2等差数列一、等差数列1、定义注:“从第二项起”及“同一常数”用红色粉笔标注二、等差数列的通项公式例题与练习育星教育网随着年岁的叠加,我们会渐渐发现:越是有智慧的人,越是谦虚,因为昂头的只是稗子,低头的才是稻子;越是富有的人,越是高贵,因为真正的富裕是灵魂上的高贵以及精神世界的富足;越是优秀的人,越是努力,因为优秀从来不是与生俱来,从来不是一蹴而就。随着沧桑的累积,我们也会慢慢懂得:成功的路,其实并不拥挤,因为能够坚持到底的人实在太少;所有优秀的人,其实就是活得很努力的人,所谓的胜利,其实最后就是自身价值观的胜利。人到中年,突然间醒悟许多,总算明白:人生,只有将世间的路一一走遍,才能到尽头;生活,只有将尘世况味种种尝遍,才能熬出头。这世间,从来没有最好,只有更好。每天,总想要努力醒得比太阳还早,因为总觉得世间万物,太阳是最能赐人力量和能量的。每当面对喷薄的日出,心中的太阳随之冉冉腾起,生命之火熊熊燃烧,生活的热情就会光芒四射。我真的难以想象,那些从来不早起的人,一生到底能够看到几回日升?那些从来没有良好习惯的人,活到最后到底该是多么的遗憾与愧疚?曾国藩说:早晨不起,误一天的事;幼时不学,误一生的事。尼采也说:每一个不曾起舞的日子,都是对生命的辜负。光阴易逝,岂容我待?越是努力的人,越是没有时间抱怨,越是没有工夫颓丧。每当走在黎明的曙光里,看到那些兢兢业业清洁城市的“美容师”,我就会由衷地欣赏并在心底赞叹他们,因为他们活得很努力很认真。每当看见那些奔跑在朝霞绚烂里的晨练者,我就会从心里为他们竖起大拇指,因为他们给自己力量的同时,也赠予他人能量。我总觉得:你可以不优秀,但你必须有认真的态度;你可以不成功,但你必须努力。这个世界上,从来没有谁比谁更优秀,只有谁比谁更努力。我也始终认为:一个活得很努力的人,自带光芒万丈;一个人认真的样子,比任何时候都要美好;一个能够自律自控的人,他的人生也就成功了大半。世间每一种的好,从来都只为懂得努力的人盛装而来。有时候,我真的感觉,人生的另一个名字应该叫做努力,努力了就会无悔,努力了就会无愧;生活的另一种说法应该叫做煎熬,熬过了漫漫黑夜,天就亮了,熬过了萧萧冬日,春天就来了。人生不易,越努力越幸运;余生不长,越珍惜越精彩。人生,是一本太仓促的书,越认真越深刻;生命,是一条无名的河,越往前越深邃。愿你不要为已逝的年华叹息,不要为前路的茫茫而裹足不前愿你相信所有的坚持总能奏响黎明的号角,所有的努力总能孕育硕果的盛驾光临。愿你坚信越是成功的人越是不允许自己颓废散漫,越是优秀的人越是努力……生活中很多时候,我们遇到一些复杂的情况,会很容易被眼前的障碍所蒙蔽,找不到解决问题的方法。这时候,如果能从当前的环境脱离出来,从一个新角度去解决问题,也许就会柳暗花明。一个土豪,每次出门都担心家中被盗,想买只狼狗栓门前护院,但又不想雇人喂狗浪费银两。苦思良久后终得一法:每次出门前把WiFi修改成无密码,然后放心出门每次回来都能看到十几个人捧着手机蹲在自家门口,从此无忧。护院,未必一定要养狗换个角度想问题,结果大不同。一位大爷到菜市场买菜,挑了3个西红柿到到秤盘,摊主秤了下:“一斤半3块7。”大爷:“做汤不用那么多。”去掉了最大的西红柿。摊主:“一斤二两,3块。”正当身边人想提醒大爷注意秤时,大爷从容的掏出了七毛钱,拿起刚刚去掉的那个大的西红柿,潇洒地换种算法,独辟蹊径,你会发现解决问题的另一个方法。生活中,我们特别容易陷入非A即B的思维死角,但其实,遭遇两难困境时换个角度思考,也许就会明白:路的旁边还有路。一个鱼塘新开张,钓费100块。钓了一整天没钓到鱼,老板说凡是没钓到的就送一只鸡。很多人都去了,回来的时候每人拎着一只鸡,大家都很高兴!觉得老板很够意思。后来,钓鱼场看门大爷告诉大家,老板本来就是个养鸡
本文标题:《等差数列及其通项公式》说课稿高品质版
链接地址:https://www.777doc.com/doc-1741489 .html