您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 七年级周末培优2:利用绝对值的几何意义解题
第1页七年级周末培优2:利用绝对值的几何意义解题班级:姓名:号次:例题分析:例1已知a是有理数,|a-2017|+|a-2018|的最小值是________..例2|x-2|-|x-5|的最大值是_______,最小值是_______.例3方程|x-1|+|x+2|=4的解为__________.例4若|x+1|+|2-x|=3,则x的取值范围是________.例5对于任意数x,若不等式|x+2|+|x-4|>a恒成立,则a的取值范围是___________.例6不等式|x+2|+|x-3|>5的解集是__________.例8(第15届江苏省竞赛题,初一)已知|x+2|+|1-x|=9-|y-5|-|1+y|,求x+y最大值与最小值.一.选择题(共3小题)1.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2bB.a+1和b+1C.a+1和b﹣1D.2a和2b2.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7B.5C.4D.13.下列结论错误的是()A.若a>0,b<0,则a﹣b>0B.a<b,b>0,则a﹣b<0C.若a<0,b<0,则a﹣(﹣b)<0D.若a<0,b<0,且|a|>|b|,则a﹣b>0二.填空题(共8小题)4.如果x、y都是不为0的有理数,则代数式的最大值是.5.若|m|=3,|n|=2且m>n,则2m﹣n=.6.|x+2|+|x﹣2|+|x﹣1|的最小值是.7.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n=.8.若|a+1|+|a﹣2|=5,|b﹣2|+|b+3|=7,则a+b=.9.【阅读材料】“九宫图”源于我国古代夏禹时期的“洛书”(图1所示),是世界上最早的矩阵,又称“幻方”,用今天的数学符号翻译出来,“洛书”就是一个三阶“幻方”(图2所示).【规律总结】观察图1、图2,根据“九宫图”中各数字之间的关系,我们可以总结出“幻方”需要满足的条件是;若图3,是一个“幻方”,则a=.10.电影《哈利•波特》中,小哈利波特穿越墙进入“站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“站台”.11.在数轴上,点P表示的数是a,点P′表示的数是,我们称点P′是点P的“相关点”,已知数轴上A1的相关点为A2,点A2的相关点为A3,点A3的相关点为A4…,这样依次得到点A1、A2、A3、A4,…,An.若点A1在数轴表示的数是,则点A2018在数轴上表示的数是.第2页三.解答题(共13小题)12.若|a|+|b|=4,且a=﹣1,求a﹣b的值.13.已知|a﹣1|=5,|b|=2,|a+b|≠a+b,求ab的值.14.同学们都知道,|5﹣(﹣2)|表示5与﹣2之差的绝对值,实际上也可理解为5与﹣2两数在数轴上所对的两点之间的距离.如|x﹣3|的几何意义是数轴上表示有理数3的点与表示有理数的点之间的距离.试探索:(1)求|5﹣(﹣2)|=.(2)若|x﹣3|=|x+1|,则x=.(3)同样道理|x+5|+|x﹣2|表示数轴上有理数x所对点到﹣5和2所对的两点距离之和,请你找出所有符合条件的整数x,使得|x+5|+|x﹣2|=7,这样的整数是.15.如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点C是AB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).(1)当x=秒时,点P到达点A.(2)运动过程中点P表示的数是(用含x的代数式表示);(3)当P,C之间的距离为2个单位长度时,求x的值.16.在一个3×3的方格中填写了9个数字,使得每行、每列、每条对角线上的三个数之和相等,得到的3×3的方格称为一个三阶幻方.(1)在图1中空格处填上合适的数字,使它构成一个三阶幻方;(2)如图2的方格中填写了一些数和字母,当x+y的值为多少时,它能构成一个三阶幻方.第3页17.已知:数轴上点A表示的数是8,点B表示的数是﹣4.动点P从点A出发,以每秒6个单位长度的速度沿数轴向左运动,动点Q从点B出发,以每秒4个单位长度的速度沿数轴向左运动.P,Q两点同时出发.(1)经过多长时间,点P位于点Q左侧2个单位长度?(2)在点P运动的过程中,若点M是AP的中点,点N是BP的中点,求线段MN的长度.18.已知数轴上的点A和点B之间的距离为32个单位长度,点A在原点的左边,距离原点5个单位长度,点B在原点的右边.(1)点A所对应的数是,点B对应的数是;(2)若已知在数轴上的点E从点A出发向左运动,速度为每秒2个单位长度,同时点F从点B出发向左运动,速度为每秒4个单位长度,在点C处点F追上了点E,求点C对应的数.19.如图,点A、B都在数轴上,且AB=6(1)点B表示的数是;(2)若点B以每秒2个单位的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B都以每秒2个单位沿数轴向右运动,而点O不动,t秒后有一个点是一条线段的中点,求t.20.观察下面的等式:﹣1=﹣|﹣+2|+3;3﹣1=﹣|﹣1+2|+3;1﹣1=﹣|1+2|+3;(﹣)﹣1=﹣|+2|+3;(﹣2)﹣1=﹣|4+2|+3回答下列问题:(1)填空:﹣1=﹣|5+2|+3;(2)已知2﹣1=﹣|x+2|+3,则x的值是;(3)设满足上面特征的等式最左边的数为y,求y的最大值,并写出此时的等式.第4页22.如图,点A、B都在数轴上,O为原点.(1)点B表示的数是;(2)若点B以每秒2个单位长度的速度沿数轴向右运动,则2秒后点B表示的数是;(3)若点A、B分别以每秒1个单位长度、3个单位长度的速度沿数轴向右运动,而点O不动,t秒后,A、B、O三个点中有一个点是另外两个点为端点的线段的中点,求t的值.23.已知数轴上,点O为原点,点A对应的数为11,点B对应的数为b,点C在点B右侧,长度为3个单位的线段BC在数轴上移动,(1)如图1,当线段BC在O,A两点之间移动到某一位置时,恰好满足线段AC=OB,求此时b的值;(2)线段BC在数轴上沿射线AO方向移动的过程中,是否存在AC﹣OB=AB?若存在,求此时满足条件的b的值;若不存在,说明理由.24.已知,一个点从数轴上的原点开始,先向左移动7cm到达A点,再从A点向右移动12cm到达B点,把点A到点B的距离记为AB,点C是线段AB的中点.(1)点C表示的数是;(2)若点A以每秒2cm的速度向左移动,同时C、B点分别以每秒1cm、4cm的速度向右移动,设移动时间为t秒,①点C表示的数是(用含有t的代数式表示);②当t=2秒时,求CB﹣AC的值;③试探索:CB﹣AC的值是否随着时间t的变化而改变?若变化,请说明理由;若不变,请求其值.第5页七年级周末培优2:利用绝对值的几何意义解题参考答案与试题解析一.选择题(共3小题)1.若a,b互为相反数,则下列各对数中不是互为相反数的是()A.﹣2a和﹣2bB.a+1和b+1C.a+1和b﹣1D.2a和2b【分析】若a,b互为相反数,则a+b=0,根据这个性质,四个选项中,两个数的和只要不是0的,一定不是互为相反数.【解答】解:∵a,b互为相反数,∴a+b=0.A中,﹣2a+(﹣2b)=﹣2(a+b)=0,它们互为相反数;B中,a+1+b+1=2≠0,即a+1和b+1不是互为相反数;C中,a+1+b﹣1=a+b=0,它们互为相反数;D中,2a+2b=2(a+b)=0,它们互为相反数.故选:B.【点评】本题考查了互为相反数的意义和性质:只有符号不同的两个数互为相反数,0的相反数是0;一对相反数的和是0.2.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P处对应的数字是()A.7B.5C.4D.1【分析】设下面中间的数为x,分别表示出相应的数,再根据每一列以及每一条对角线上的三个数字之和均相等,列出方程求解即可.【解答】解:设下面中间的数为x,则三个数字之和为8+x,8﹣3=5,8+x﹣3﹣6=x﹣1,8+x﹣2﹣(x﹣1)=7,5+6+7﹣7﹣3=8,如图所示:P+6+8=7+6+5,解得P=4.故选:C.【点评】此题主要考查有理数的加法,图形的变化规律,学习过程中注意培养自己的观察、分析能力.3.下列结论错误的是()A.若a>0,b<0,则a﹣b>0B.a<b,b>0,则a﹣b<0C.若a<0,b<0,则a﹣(﹣b)<0D.若a<0,b<0,且|a|>|b|,则a﹣b>0【分析】根据有理数的减法运算法则对各选项分析判断利用排除法求解.【解答】解:A、若a>0,b<0,则a﹣b>0正确,故本选项错误;第6页B、若a<b,b>0,则a﹣b<0正确,故本选项错误;C、若a<0,b<0,则a﹣(﹣b)<0正确,故本选项错误;D、若a<0,b<0,且|a|>|b|,则a﹣b>0错误,故本选项正确.故选:D.【点评】本题考查了有理数的减法,要注意字母表示数的抽象性,熟记运算法则是解题的关键.二.填空题(共8小题)4.如果x、y都是不为0的有理数,则代数式的最大值是1.【分析】此题要分三种情况进行讨论:①当x,y中有二正;②当x,y中有一负一正;③当x,y中有二负;分别进行计算.【解答】解:①当x,y中有二正,=1+1﹣1=1;②当x,y中有一负一正,=1﹣1+1=1;③当x,y中有二负,=﹣1﹣1﹣1=﹣3.故代数式的最大值是1.故答案为:1.【点评】此题主要考查了绝对值,以及有理数的除法,关键是要分清分几种情况,然后分别进行讨论计算.5.若|m|=3,|n|=2且m>n,则2m﹣n=4或8.【分析】根据|m|=3,|n|=2且m>n,可得:m=3,n=±2,据此求出2m﹣n的值是多少即可.【解答】解:∵|m|=3,|n|=2且m>n,∴m=3,n=±2,(1)m=3,n=2时,2m﹣n=2×3﹣2=4(2)m=3,n=﹣2时,2m﹣n=2×3﹣(﹣2)=8故答案为:4或8.【点评】此题主要考查了绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.6.|x+2|+|x﹣2|+|x﹣1|的最小值是4.【分析】根据|x﹣a|表示数轴上x与a之间的距离,因而原式表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小.【解答】解:|x+2|+|x﹣2|+|x﹣1|表示:数轴上一点到﹣2,2和1距离的和,当x在﹣2和2之间的1时距离的和最小,是4.故答案为:4.【点评】本题主要考查了绝对值的意义,正确理解|x﹣a|表示数轴上x与a之间的距离,是解决本题的关键.7.已知m、n、p都是整数,且|m﹣n|+|p﹣m|=1,则p﹣n=±1.第7页【分析】由于|m﹣n|+|p﹣m|=1,且m、n、p都是整数,那么只有两种情况:①|m﹣n|=1,p﹣m=0;②m﹣n=0,|p﹣m|=1;这两种情况都可以得出p﹣n=±1;从而求解.【解答】解:因为m,n,p都是整数,|m﹣n|+|p﹣m|=1,则有:①|m﹣n|=1,p﹣m=0;解得p﹣n=±1;②|p﹣m|=1,m﹣n=0;解得p﹣n=±1.综合上述两种情况可得:p﹣n=±1.故答案为:±1.【点评】本题主要考查了非负数的性质,根据已知条件求出p、n的关系式是解答本题的关键.8.若|a+1|+|a﹣2|=5,|b﹣2|+|b+3|=7,则a+b=±1或±6.【分析】先根据绝对值的性质分类讨论求得a、b的值,再分别代入a+b计算可得.【解答】解:当a≤﹣1时,﹣a﹣1+2﹣a=5,解得a=﹣2;当﹣1<a<2时,a+1+2﹣a=3≠5,舍去;当a≥2时,a+1+a﹣2=5,解得a=3;当b≤﹣3时,2﹣b﹣b﹣3=7,解得b=﹣
本文标题:七年级周末培优2:利用绝对值的几何意义解题
链接地址:https://www.777doc.com/doc-1743257 .html