您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 其它行业文档 > 第三章-光催化氧化技术
光催化氧化技术(TechnologyofPhotocatalysisOxidation)什么是光催化?◎概括说来,就是光催化剂在光的作用下发生催化作用。◎光催化剂:一种在光的照射下,自身不起变化,却可以促进化学反应的物质。利用光能转换成为化学反应所需的能量,产生催化作用,使周围的氧气及水分子激发成极具氧化力的自由基或负离子。◎光催化剂在光照条件(可以是不同波长的光照)下所起到催化作用的化学反应,统称为光催化反应。◎光催化一般是多种相态之间的催化反应。光催化氧化◎均相光催化氧化◎非均相光催化氧化均相光催化氧化——UV/Fenton试剂法一、Fenton试剂◎Fenton试剂:Fe2+和H2O2的组合。◎已有100多年的应用历史,在精细化工、药学化工、医药卫生、环境污染治理等方面都有应用。◎1964年,Eisenhouser首次使用Fenton试剂处理苯酚及烷基苯废水。◎Fenton试剂在废水处理中主要用于去除COD、色度和泡沫等。均相光催化氧化——UV/Fenton试剂法二、Fenton氧化机理Fe2++H2O2→·OH+OH-+Fe3+Fe3++H2O2→Fe2++·HO2+H+操作条件:pH=3~5三、Fenton试剂在废水处理中的应用——单独作为一种处理方法氧化有机废水——与其他技术联用,如混凝沉降法、活性炭法、生物法、UVUV/Fenton反应体系均相光催化氧化——UV/Fenton试剂法Fe(III)混合物的光解自由基反应·OH+AFenton反应Fe(II)+H2O2AmidAend·OHH2O2的光解直接光解A+hvλ300nmλ300nmFe(II)Fe(III)hνUV/Fenton法及反应机理UV/Fenton的优点◎降低Fe2+的用量,保持H2O2较高的利用率。◎UV和Fe2+对H2O2的催化分解存在协同效应,即:·OH的生成速率远大于传统Fenton法和紫外催化H2O2分解速率的简单加和。均相光催化氧化——UV/Fenton试剂法影响UV/Fenton反应的因素1.有机物浓度:污染物的去除率均随其起始浓度的增加而降低。2.Fe2+浓度:Fe2+浓度过多,不利于·OH的生成而使得反应速率降低;Fe2+过低不利于H2O2分解为·OH。维持适当的Fe2+浓度。3.H2O2浓度:在维持其他反应条件不变的前提下,增大H2O2投加浓度或投加量可以提高反应速率。均相光催化氧化——UV/Fenton试剂法4.载气:氮气、空气和氧气三种载气的比较,氧气作为载气效果最好。5.pH值和温度:温度影响不大;pH值控制在6以下。6.反应时间:取决于诸多因素,最显著的是催化剂剂量和废水负荷。7.光源:照射剂量越大,对有机物的矿化效果越好。均相光催化氧化——UV/Fenton试剂法非均相光催化氧化技术——TiO2光催化氧化技术非均相光催化技术的发展概况1972年,Fujishima和Honda在半导体TiO2电极上发现了水的光催化分解作用,从而开辟了半导体光催化这一新的领域。1977年,Yokota等发现在光照条件下,TiO2对丙烯环氧化具有光催化活性,从而拓宽了光催化的应用范围,为有机物氧化反应提供了一条新的思路。近三十多年来,光催化技术在环保、卫生保健、有机合成等方面的应用研究发展迅速,半导体光催化成为国际上最活跃的研究领域之一。有机物催化剂光源光降解产物烃:脂肪烃、芳香烃TiO2紫外CO2、H2卤代物:卤代烷烃、烯烃、脂肪酸卤代芳香族化合物TiO2紫外HCl、CO2羧酸:乙酸、丙酸、丁酸、戊酸、乳酸、乙酰丙酸TiO2紫外CO、H2烷、烃、醇表面活性剂:DBS、SDS、BS、4-氯酚Fe2O3、ZnO、TiO2等日光灯CO2、HCl、SO32-染料:酸性红、直接耐酸大红、活性艳红、酸性艳蓝、阳离子艳红TiO2紫外CO2、H2O、无机离子等含氮有机物:磷酸四丁基铵、阿特拉津、苯丙氨酸TiO2紫外CO32-、NO3-、NH4+等有机磷杀虫剂:DDVP、DEPTiO2紫外Cl-、PO43-、CO2不同类型有机物的光催化降解◎TiO2光催化氧化的原理◎光催化剂◎光催化反应器◎TiO2光催化技术的应用◎展望TiO2光催化氧化原理TiO2光催化氧化原理2TiOhhehe热量2HOHOHhOHHO222hHOOHOHO2hHOOHH22eOO22OHHO22222OHOHO2222OOHOHOOHOHhOH222其他产物OHCOOHOOrgan222nM()neM金属离子图中所反映的机理涉及的基本的反应式表达如下:在光照下,如果光子的能量大于半导体禁带宽度,其价带上的电子(e-)就会被激发到导带上,同时在价带上产生空穴(h+)。当存在合适的俘获剂、表面缺陷或者其他因素时,电子和空穴的复合得到抑制,就会在催化剂表面发生氧化-还原反应。价带空穴是良好的氧化剂,导带电子是良好的还原剂,在半导体光催化反应中,一般与表面吸附的H2O,O2反应生成•OH和超氧离子O2-,能够把各种有机物直接氧化成CO2、H2O等无机小分子,电子也具有强还原性,可以还原吸附在其表面的物质。激发态的导带电子和价带空穴能重新合并,并产生热能或其他形式散发掉。TiO2光催化氧化原理光催化的技术特征1.低温深度反应光催化氧化可以在室温下将水、空气和土壤中的有机污染物氧化。2.绿色能源光催化可利用太阳光作为能源来活化光催化剂,驱动氧化—还原反应,而且光催化剂在反应过程中并不消耗。从能源角度而言,这一特征使光催化技术更具魅力。光催化的技术特征3.氧化性强大量研究表明,半导体光催化具有氧化性强的特点,对臭氧难以氧化的某些有机物如三氯甲烷、四氯化炭、六氯苯、都能有效地加以分解,所以对难以降解的有机物具有特别意义。4.寿命长理论上,光催化剂的寿命是无限长的。5.广谱性光催化对从烃到羧酸的众多种类有机物都有氧化效果,美国环保署公布的九大类114种污染物均被证实可通过光催化氧化法降解,即使对有机物如卤代烃、染料、含氮有机物、有机磷杀虫剂也有很好的去除效果,一般经过持续反应可达到完全净化。光催化的技术特征光催化剂(Photocatalyst)光催化剂=光[Photo=Light]+催化剂[catalyst]光催化剂是一种在光的照射下,自身不起变化,却可以促进化学反应的物质。光催化剂是将光能转换成为化学反应的能量,产生催化作用,使周围水分子及氧气激发成极具氧化力的·OH及O2-。用其分解对人体和环境有害的有机物质及部分无机物质,加速反应,不造成资源浪费,且不形成附加污染。常见的光催化材料PhotocatalystEbgeV)PhotocatalystEbg(eV)Si1.1ZnO3.2TiO2(Rutile)3.0TiO2(Anatase)3.2WO32.7CdS2.4ZnS3.7SrTiO33.4SnO33.5WSe31.2Fe2O32.2a-Fe2O33.1金属硫化物在水溶液中不稳定,会发生阳极光腐蚀,且有毒!铁的氧化物会发生阴极光腐蚀ZnO在水中不稳定,会在粒子表面生成Zn(OH)2TiO2光催化剂TiO2有三种不同的晶体结构:锐钛矿(anatase)结构、金红石(rutile)结构和板钛矿(brookite)结构。金红石最稳定,从低温到熔点都不会发生晶相转变;锐钛矿次之,在室温下稳定;板钛矿很少见。具有光催化作用的主要是锐钛矿结构和金红石结构,其中以锐钛矿结构的催化活性最高。锐钛矿型TiO2吸收小于387nm的光,金红石型TiO2吸收小于413nm的光。TiO2光催化材料的特性合适的半导体禁带宽度。具有良好的抗光腐蚀性和化学稳定性。廉价,原料来源丰富,成本低。光催化活性高(吸收紫外光性能强;禁带和导带之间的能隙大,光生电子的还原性和空穴的氧化性强)。对很多有机污染物有较强的吸附作用。影响TiO2光催化性能的因素晶粒尺寸:纳米量级的TiO2作为光催化剂将有利于提高光降解效率——粒径的减小,纳米级光催化剂的表面原子数迅速增加,光吸收效率提高,从而增加表面光生载流子的浓度;——晶粒越小,表面原子比例增大,表面·OH基团的数目也随之增加,从而提高了反应效率;——晶粒尺寸的减小,比表面积增大,有利于反应物的吸附,增大反应几率。晶型:板钛型,锐钛矿,金红石型——板钛型为不稳定的结构;——锐钛型吸收紫外线的能力强,其表面对O2的吸附能力较强,对电子-空穴对的捕收能力强,所以具有较高的光催化活性;——金红石型则因为结构稳定且致密,具有较高的硬度、密度、介电常数及折射率,遮盖力和着色力也较高,但表面电子-空穴对重新复合的速度较快,光催化活性差。影响TiO2光催化性能的因素形态:颗粒状与膜状——颗粒状的光催化剂在溶液中呈悬浮状态,在溶液中与有机物的接触面积小,且容易发生团聚现象——膜状:①防止粒子的流失;②增加光催化剂整体的比表面积;③光催化剂表面受到光照射的催化剂粒子数目增加,提高了光的利用率;④一些载体可同光催化剂本身发生相互作用,有利于电子-空穴对的分离;⑤利用吸附剂类载体可增加对反应物的吸附,提高催化剂的光催化活性,同时实现吸附剂类载体的再生;⑥用载体将光催化剂固定,便于制成各种形状的光催化反应器。影响TiO2光催化性能的因素TiO2光催化剂的制备方法(一)纳米TiO2粉体光催化剂的制备方法◎气相法:高温氧化原理优点:反应速度快,能实现连续生产,制得的产品纯度高、粒度小、分散性好、表面活性大。缺点:对反应器的构型、设备的材质、加热及进料方式等均有很高的要求。◎液相法优点:合成温度低、设备简单、成本低。缺点:颗粒大小、形状不均,分散性差,影响产品的使用效果和应用范围粉体TiO2光催化剂的制备方法1.水解法利用钛醇盐(钛酸丁脂)能溶于有机溶剂并发生水解生成氢氧化物或氧化物的特性制备纳米TiO2——最简单的方法。2.沉淀法普通沉淀法以TiCl4、Ti(SO4)2等无机盐为原料,用氨水、NaOH和Na2CO3等碱性物质沉淀。均匀沉淀法是在溶液中加入某种物质[如二乙醇胺,HN(CH2CH2OH)2],使之通过溶液中的化学反应缓慢生成沉淀剂制备粒度均匀的TiO2粉体。粉体TiO2光催化剂的制备方法3.水热法在加有聚四氟乙烯内衬的筒式高压釜中以TiCl4、偏钛酸或钛酸丁脂为前驱体制备。所得粉体粒度分布窄,团聚程度低,纯度高,且制备过程污染小,成本较低。4.溶胶-凝胶法法以钛醇盐或钛的无机盐为原料,经水解和缩聚得溶胶,再进一步缩聚得凝胶,经干燥、煅烧制得。制得的粉体纯度高,粒度细,分散好;但烧结性不好,干燥时收缩大,易发生团聚现象。利用溶胶-凝胶法制备TiO2,其反应过程为:水解:失水缩聚:失醇缩聚:工艺流程为:xROHOROHTiOxHORxx424)()()(TiOHTiOTiTiHOOHTixO2n)(R)(ROHTiOTiTiHOORTi)(溶胶凝胶法制备TiO2原理钛酸四丁脂在酸性条件下,水解产物为含钛离子溶胶Ti(O-C4H9)4+4H2OTi(OH)44C4H9OH+Ti(OH)4+Ti(O-C4H9)42TiO2+4C4H9OHTi(OH)4Ti(OH)4+2TiO24H2O+含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团,最后形成稳定凝胶溶胶凝胶法制备TiO2原理10mL钛酸丁酯+无水乙醇无水乙醇+蒸馏水+冰醋酸搅拌40℃水浴加热无色凝胶80℃烘干热处理二氧化钛粉体溶胶-凝胶法制备粉体TiO2光催化剂工艺(二)负载型TiO2光催化剂的制备——将TiO2固定到某种载体上——使用前驱体,通过化学反应生成TiO2,将其负载到光滑平整的载体上,形成一层连续的薄膜1.粉体烧结法将TiO2球磨到一定程度溶于水或醇中,制成悬浮液,然后进入载体,一定时间后取出,风干,在600℃以下烧结制得。负载型TiO2光催化剂的制备方法2.偶联法在TiO2中加入胶粘剂(如氟树脂、聚苯乙烯等)后涂覆在载体表面,而后烘
本文标题:第三章-光催化氧化技术
链接地址:https://www.777doc.com/doc-1747929 .html